Varying Distances (varying + distance)

Distribution by Scientific Domains


Selected Abstracts


Modified methodology for computing interference in LEO satellite environments

INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, Issue 6 2003
Raúl Chávez Santiago
Abstract Computing interference is very important in satellite networks design in order to assure the electromagnetic compatibility (EMC) with other radiocommunication systems. There are different methods to compute interference in geostationary (GEO) satellite systems including conventional methods using link budget equations and alternate methods such as increase in noise temperature. However, computing interference in low earth orbit (LEO) systems represents a different problem. Due to the special characteristics of this kind of orbits, the elevation angle at any site changes continuously over time, meaning a time dependent change of the propagation path length between an interfering transmitter and an interfered-with receiver, and of the discrimination provided by the transmitting and/or the receiving antenna. Thus, conventional interference prediction methods developed for fixed links must be adapted to the case of LEO systems. To overcome this problem a mathematical model that characterizes the path length variations by an average value obtained from the probability density function of the varying distance between an interfering transmitter and an interfered- with receiver is proposed in this paper. This average path length enables the use of conventional link budget methods to reduce the computation time for the evaluation of interference in LEO satellite environments. Two practical examples show the possible applications of the proposed model. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Space-filling problems in ramose trepostome bryozoans as exemplified in a giant colony from the Permian of Greenland

LETHAIA, Issue 2 2001
Marcus M. Key Jr
In order to maintain branch strength and a confluent outer membrane, trepostome bryozoans had to maintain a continuous colony surface without any structural gaps. This put great constructional demands on colonies with relatively thick exozones to fill the exozonal space while preserving a suitable autozooecial spacing for colony-wide feeding currents. This situation was magnified in a giant colony of the trepostome Tabulipora from the Early Permian Kim Fjelde Fm. in eastern North Greenland. This single branch colony fragment had a diameter of 37.5 mm. A block was cut out of the 8- mm thick exozone, and 20 serial tangential peels were made at varying distances from the endozone. Exilazooecial and autozooecial chamber cross-sectional area, packing, spacing, and wall thickness were measured in the maculae and intermacular areas. Results indicate that, in this colony, volumetric space in the exozone was occupied by budding new exilazooecia in the maculae and by exozonal budding: budding of new exilazooecia in the intermacular areas that transform into autozooecia. Exilazooecia played a dominantly space-filling role in the maculae as well as helped to maintain regular spacing of autozooecia in the intermacular areas. [source]


Recurrent nuclear DNA introgression accompanies chloroplast DNA exchange between two eucalypt species

MOLECULAR ECOLOGY, Issue 7 2010
G. E. MCKINNON
Abstract Numerous studies within plant genera have found geographically structured sharing of chloroplast (cp) DNA among sympatric species, consistent with introgressive hybridization. Current research is aimed at understanding the extent, direction and significance of nuclear (nr) DNA exchange that accompanies putative cpDNA exchange. Eucalyptus is a complex tree genus for which cpDNA sharing has been established between multiple species. Prior phylogeographic analysis has indicated cpDNA introgression into the widespread forest species Eucalyptus globulus from its rare congener E. cordata. In this study, we use AFLP markers to characterize corresponding nrDNA introgression, on both a broad and fine spatial scale. Using 388 samples we examine (i) the fine-scale spatial structure of cp and nrDNA introgression from E. cordata into E. globulus at a site in natural forest and (ii) broad-scale patterns of AFLP marker introgression at six additional mixed populations. We show that while E. globulus and E. cordata retain strongly differentiated nuclear gene pools overall, leakage of nrDNA occurs at mixed populations, with some AFLP markers being transferred to E. globulus recurrently at different sites. On the fine scale, different AFLP fragments show varying distances of introgression into E. globulus, while introgression of cpDNA is extensive. The frequency of E. cordata markers in E. globulus is correlated with spatial proximity to E. cordata, but departs from expectations based on AFLP marker frequency in E. cordata, indicating that selection may be governing the persistence of introgressed fragments in E. globulus. [source]


Species-specific detection of Lobaria pulmonaria (lichenized ascomycete) diaspores in litter samples trapped in snow cover

MOLECULAR ECOLOGY, Issue 9 2001
J.-C. Walser
Abstract The foliose lichen Lobaria pulmonaria has suffered a substantial decline in central and northern Europe during the twentieth century and is now considered to be critically endangered in many European lowland regions. Based on demographic studies, it has been proposed that under the present environmental conditions and forest management regimes, dispersal of diaspores and subsequent establishment of new thalli are insufficient to maintain the remnant small lowland populations. Chances of long-term survival may therefore be reduced. The data and analytical power of these demographic studies are limited. Since lichen diaspores show very few species-specific morphological characteristics, and are therefore almost indistinguishable, the accurate assessment of diaspore flux would be a fundamental first step in better understanding the life cycle of L. pulmonaria. Here we present a new molecular approach to investigate the dispersal of L. pulmonaria diaspores in its natural environment by specifically identifying small amounts of DNA in snow litter samples at varying distances from known sources. We used a species-specific polymerase chain reaction (PCR) primer pair to amplify the ribosomal internal transcribed spacer region (ITS rDNA) and a sensitive automated PCR product detection system using fluorescent labelled primers. We detected considerable amounts of naturally dispersed diaspores, deposited as far as 50 m away from the closest potential source. Diaspores were only found in the direction of the prevailing wind. Diaspore deposition varied from 1.2 diaspores per m2 per day at 50 m distance from the source to 15 diaspores per m2 per day at 1 m distance. The method described in this paper opens up perspectives for studies of population dynamics and dispersal ecology mainly in lichenized ascomycetes but also in other organisms with small, wind-dispersed diaspores. [source]


Examination of the distribution of nicosulfuron in sunflower plants by matrix-assisted laser desorption/ionisation mass spectrometry imaging

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 9 2009
David M. G. Anderson
Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) has been used to image the distribution of the pesticide nicosulfuron (2-[[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]aminosulfonyl]- N,N -dimethyl-3-pyridinecarboxamide) in plant tissue using direct tissue imaging following root and foliar uptake. Sunflower plants inoculated with nicosulfuron were horizontally sectioned at varying distances along the stem in order to asses the extent of translocation; uptake via the leaves following foliar application to the leaves and uptake via the roots from a hydroponics system were compared. An improved sample preparation methodology, encasing samples in ice, allowed sections from along the whole of the plant stem from the root bundle to the growing tip to be taken. Images of fragment ions and alkali metal adducts have been generated that show the distribution of the parent compound and a phase 1 metabolite in the plant. Positive and negative controls have been included in the images to confirm ion origin and prevent false-positive results which could originate from endogenous compounds present within the plant tissue. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Effects of trapping effort and trap shyness on estimates of tiger abundance from camera trap studies

ANIMAL CONSERVATION, Issue 3 2004
Per Wegge
Camera trapping has recently been introduced as an unbiased and practical method for monitoring tiger abundance. In a high density area in the Royal Bardia National Park in lowland Nepal, we tested this method by trapping very intensively within a 25 km2 area to determine the true number of animals in that area. We then tested the effect of study design by sub-sampling the data set using varying distances between trap stations and by reducing the number of trapping nights at each station. We compared these numbers with the density estimates generated by the capture,recapture models of the program CAPTURE. Both distance between traps and trapping duration greatly influenced the results. For example, increasing the inter-trap distance from 1 to 2.1 km and reducing the trapping duration per station from 15 to 10 nights reduced the number of tigers captured by 25%. A significant decrease in trapping rates during successive 5-night periods suggested that our tigers became trap-shy, probably because of the photo flash and because they detected the camera traps from cues from impression pads 50 m from the traps. A significant behavioural response was also confirmed by the program CAPTURE. The best capture,recapture model selected by the computer program (Mbh) gave precise estimates from data collected by the initial 1 km spacing of traps. However, when we omitted data from half the number of traps, thus decreasing the sampling effort to a more realistic level for monitoring purposes, the program CAPTURE underestimated the true number of tigers. Most probably, this was due to a combination of trap shyness and the way the study was designed. Within larger protected areas, total count from intensive, stratified subsampling is suggested as a complementary technique to the capture,recapture method, since it circumvents the problem of trap shyness. [source]