Home About us Contact | |||
Vagal Complex (vagal + complex)
Kinds of Vagal Complex Selected AbstractsImpact of Sim1 gene dosage on the development of the paraventricular and supraoptic nuclei of the hypothalamusEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2009Sabine Michaëlle Duplan Abstract The bHLH-PAS transcription SIM1 is required for the development of all neurons of the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus. Mice with a loss of Sim1 die within a few days of birth, presumably because of the lack of a PVN and SON. In contrast, mice with a decrease of Sim1 survive, are hyperphagic and become obese. The mechanism by which Sim1 controls food intake remains unclear. Here we show that the development of specific PVN and SON cell types is sensitive to Sim1 gene dosage. Sim1 haploinsufficiency reduces the number of vasopressin (AVP)- and oxytocin-producing cells in the PVN by about 50 and 80%, respectively, but does not affect the development of Crh, Trh and Ss neurons. A decrease of AVP-producing cells increases the sensitivity of Sim1 heterozygous mice to chronic dehydration. Moreover, retrograde labelling showed a 70% reduction of PVN neurons projecting to the dorsal vagal complex, raising the possibility that a decrease of these axons contributes to the hyperphagia of Sim1+/, mice. Sim1 haploinsufficiency is thus associated with a decrease of several PVN/SON cell types, which has the potential of affecting distinct homeostatic processes. [source] Dual effects of NMDA receptor activation on polysialylated neural cell adhesion molecule expression during brainstem postnatal developmentEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2001Farima Bouzioukh Abstract Here we show a dual role of N -methyl- d -aspartate receptor (NMDAR) activation in controlling polysialylated neural cell adhesion molecule (PSA-NCAM) dynamic expression in the dorsal vagal complex (DVC), a gateway for many primary afferent fibres. In this structure the overall expression of PSA-NCAM decreases during the first 2 weeks after birth to persist only at synapses in the adult. Electrical stimulation of the vagal afferents causes a rapid increase of PSA-NCAM expression both in vivo and in acute slices before postnatal day (P) 14 whereas a similar stimulation induces a decrease after P15. Inhibition of NMDAR activity in vitro completely prevented these changes. These regulations depend on calmodulin activation and cGMP production at all stages. By contrast, blockade of neuronal nitric oxide synthase (nNOS) prevented these changes only after P10 in agreement with its late expression in the DVC. The pivotal role of NMDAR is also supported by the observation that chronic blockade induces a dramatic decrease in PSA-NCAM expression. [source] Effects of caudal hindbrain lactate infusion on insulin-induced hypoglycemia and neuronal substrate transporter glucokinase and sulfonylurea receptor-1 gene expression in the ovariectomized female rat dorsal vagal complex: Impact of estradiolJOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2008Kamlesh V. Vavaiya Abstract The monocarboxylate, lactate, is produced by astrocytic glycolysis and is trafficked to neurons as a substrate fuel for aerobic respiration. This molecule is a critical monitored metabolic variable in hindbrain detection of cellular energy imbalance, because diminished uptake and/or oxidative catabolism of lactate in this part of the brain activates neural mechanisms that increase systemic glucose availability. Lactate-sensitive chemosensory neurons occur in the hindbrain dorsal vagal complex (DVC). Estradiol (E) enhances expression of the neuronal monocarboxylate transporter MCT2 in the DVC during insulin-induced hypoglycemia (IIH), evidence that this hormone may promote local lactate utilization during systemic glucose shortages. We investigated the hypothesis that E regulates basal and IIH-associated patterns of DVC MCT2 and neuronal glucose transporter gene expression and that caudal fourth ventricular (CV4) lactate infusion exerts divergent effects on blood glucose levels and DVC energy transducer gene profiles in hypoglycemic E- vs. oil (O)-implanted ovariectomized (OVX) rats. Insulin-induced decrements in circulating glucose were significantly augmented by lactate, albeit to a greater extent in the presence of E. DVC MCT2, GLUT3, GLUT4, glucokinase (GCK), and sulfonylurea receptor-1 (SUR1) mRNA levels did not differ between saline-injected OVX + E and OVX + O rats. IIH elevated MCT2 and GLUT3 gene profiles in both E- and O-implanted groups, but up-regulation of MCT2 transcripts was reversed by CV4 lactate infusion during hypoglycemia in E- but not O-implanted animals. DVC GLUT4 and GK mRNA were decreased by insulin alone in OVX + O but not OVX + E, but were suppressed by lactate plus insulin treatment in the latter group. Expression of the SUR1 subunit of the energy-dependent potassium channel KATP was significantly decreased by IIH in both E- and O-treated rats and further suppressed in response to lactate delivery during hypoglycemia in OVX + E. These data reveal that E does not control baseline DVC substrate fuel transporter or energy transducer gene profiles or local MCT2, GLUT3, or SUR1 transcriptional responses to IIH but prevents IIH-associated decreases in GLUT4 and GCK mRNA in this brain site. The results also show that, in the presence of E, intensifying effects of CV4 lactate infusion on hypoglycemia are correlated with reversal of IIH enhancement of DVC MCT2 gene expression, augmented IIH inhibition of SUR1 transcripts, and reductions in GLUT4 and GCK mRNA levels relative to baseline. This work implies that IIH may enhance specific neuronal lactate and glucose transport mechanisms in the female rat DVC and that, in the presence of E, caudal hindbrain lactate repletion may normalize neuronal lactate but not glucose internalization by local neurons. The results also suggest that putative IIH-associated reductions in KATP -mediated regulation of membrane voltage in this brain site may be causally related to diminished glucose availability. © 2007 Wiley-Liss, Inc. [source] |