Home About us Contact | |||
Vaccinia Virus (vaccinia + virus)
Selected AbstractsVaccinia virus impairs directional migration and chemokine receptor switch of human dendritic cellsEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2007Abstract A crucial event for the induction of an anti-viral immune response is the coordinated, phenotype-dependent migration of dendritic cells (DC) to sites of infection and secondary lymphoid organs. Here we show that the vaccinia virus (VV) strains Western Reserve (WR) and modified virus Ankara (MVA) inhibit directional migration of mature DC toward the lymphoid chemokines CCL19 and CXCL12 without affecting surface expression of the respective chemokine receptors or impairing undirected cellular locomotion. Instead, infection with VV results in a deficiency of extracellular signal-regulated kinase-1 and a disturbance of intracellular calcium mobilization, indicating a viral interference with signaling events downstream of the surface chemokine receptors. In immature DC, apart from inhibiting chemokine-induced migration of infected DC, infection with both VV strains increases expression of the inflammatory chemokine receptors CCR1 and CXCR1 on non-infected bystander DC, which depends on the activity of IFN-,. Although functional, these chemokine receptors are resistant to lipopolysaccharide-induced down-regulation. In addition, VV-infected and non-infected bystander DC fail to up-regulate the lymphoid chemokine receptor CCR7 upon activation, together pointing to a disability to undergo the chemokine receptor switch. This study shows that VV targets directional migration of professional antigen-presenting cells at multiple functional levels, revealing a potent viral strategy of immune escape. See accompanying commentary: http://dx.doi.org/10.1002/eji.200737215 [source] Inhibition of CD1d1-mediated antigen presentation by the vaccinia virus B1R and H5R moleculesEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2006Roberts Webb, Tonya Abstract Vaccinia virus (VV) has been most commonly used as the vaccine to protect individuals against the causative agent of smallpox (variola virus), but it also uses a number of strategies meant to evade or blunt the host's antiviral immune response. Natural killer T (NKT) cells are a subset of immunoregulatory CD1d-restricted T lymphocytes believed to bridge the innate and adaptive immune responses. It is shown here that the VV-encoded molecules, B1R and H5R, play a role in the ability of VV to inhibit CD1d-mediated antigen presentation to NKT cells. These are the first poxvirus-encoded molecules identified that can play such a role in the evasion of an important component of the innate immune response. [source] Effective poxvirus removal by sterile filtration during manufacture of plasma derivatives,JOURNAL OF MEDICAL VIROLOGY, Issue 4 2005A. Berting Abstract As a consequence of the September 2001 terrorist events, programs to protect against further such acts including potentially the use of biological warfare agents have been launched in the USA and elsewhere. As part of these initiatives, Vaccinia virus was procured for the pre-emptive vaccination of key personnel against smallpox as well as population-wide protection after an eventual exposure. The introduction of this live virus into a population at a relatively large scale represents a theoretical challenge for the safety of the blood supply, and potentially for plasma for fractionation. To strengthen further the demonstration of safety margins for plasma derived products against Vaccinia virus, the capacity of sterile filtration procedures to remove the virus was investigated. An infectivity assay for the Vaccinia virus strain which represents the majority of smallpox vaccine stocks available currently was used to investigate the potential removal of this virus by sterile filtration processes during the manufacture of plasma derivatives. Vaccinia virus behaves as predicted based on its size, i.e., an artificially added virus load is removed about 10,000-fold by the sterile filtration procedures tested. As the current investigation covered a range of different protein concentrations, filter materials and filters from different manufacturers, the results obtained are considered to be widely applicable. The current investigation supports further the high safety margins of plasma derivatives against any potential Vaccinia virus content of plasma for fractionation. As the large size is a general feature of Orthopox viruses, the results would also provide assurance against poxviruses identified more recently, for example, Monkeypox virus. J. Med. Virol. 75:603,607, 2005. © 2005 Wiley-Liss, Inc. [source] Structures of vaccinia virus dUTPase and its nucleotide complexesACTA CRYSTALLOGRAPHICA SECTION D, Issue 5 2007Alexandra Samal Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) catalyzes the hydrolysis of dUTP to dUMP and pyrophosphate in the presence of Mg2+ ions. The enzyme plays multiple cellular roles by maintaining a low dUTP:dTTP ratio and by synthesizing the substrate for thymidylate synthase in the biosynthesis of dTTP. Although dUTPase is an essential enzyme and has been established as a valid target for drug design, the high degree of homology of vaccinia virus dUTPase to the human enzyme makes the identification of selective inhibitors difficult. The crystal structure of vaccinia virus dUTPase has been solved and the active site has been mapped by crystallographic analysis of the apo enzyme and of complexes with the substrate-analog dUMPNPP, with the product dUMP and with dUDP, which acts as an inhibitor. Analyses of these structures reveal subtle differences between the viral and human enzymes. In particular, the much larger size of the central channel at the trimer interface suggests new possibilities for structure-based drug design. Vaccinia virus is a prototype of the poxviruses. [source] Capturing of cell culture-derived modified Vaccinia Ankara virus by ion exchange and pseudo-affinity membrane adsorbersBIOTECHNOLOGY & BIOENGINEERING, Issue 4 2010Michael W. Wolff Abstract Smallpox is an acute, highly infectious viral disease unique to humans, and responsible for an estimated 300,500 million deaths in the 20th century. Following successful vaccination campaigns through the 19th and 20th centuries, smallpox was declared eradicated by the World Health Organization in 1980. However, the threat of using smallpox as a biological weapon prompted efforts of some governments to produce smallpox vaccines for emergency preparedness. An additional aspect for the interest in smallpox virus is its potential use as a platform technology for vector vaccines. In particular, the latter requires a high safety level for routine applications. IMVAMUNE®, a third generation smallpox vaccine based on the attenuated Modified Vaccinia Ankara (MVA) virus, demonstrates superior safety compared to earlier generations and represents therefore an interesting choice as viral vector. Current downstream production processes of Vaccinia virus and MVA are mainly based on labor-intensive centrifugation and filtration methods, requiring expensive nuclease treatment in order to achieve sufficient low host-cell DNA levels for human vaccines. This study compares different ion exchange and pseudo-affinity membrane adsorbers (MA) to capture chicken embryo fibroblast cell-derived MVA-BN® after cell homogenization and clarification. In parallel, the overall performance of classical bead-based resin chromatography (Cellufine® sulfate and Toyopearl® AF-Heparin) was investigated. The two tested pseudo-affinity MA (i.e., sulfated cellulose and heparin) were superior over the applied ion exchange MA in terms of virus yield and contaminant depletion. Furthermore, studies confirmed an expected increase in productivity resulting from the increased volume throughput of MA compared to classical bead-based column chromatography methods. Overall virus recovery was ,60% for both pseudo-affinity MA and the Cellufine® sulfate resin. Depletion of total protein ranged between 86% and 102% for all tested matrices. Remaining dsDNA in the product fraction varied between 24% and 7% for the pseudo-affinity chromatography materials. Cellufine® sulfate and the reinforced sulfated cellulose MA achieved the lowest dsDNA product contamination. Finally, by a combination of pseudo-affinity with anion exchange MA a further reduction of host-cell DNA was achieved. Biotechnol. Bioeng. 2010. 105: 761,769. © 2009 Wiley Periodicals, Inc. [source] 2212: Animal models for vaccinia virus keratitisACTA OPHTHALMOLOGICA, Issue 2010C BRANDT Purpose Studies on pathogenic mechanisms involved in viral ocular infections and testing of potential therapies requires well established quantitative animal models. We present a new model of Vaccinia virus keratitis. Methods Rabbits were infected with the Dryvax strain of Vaccinia virus and disease was scored using a modified MacDonald-Shadduck scoring system. The model will be described and examples of the use of the model for studies of pathogenesis and testing therapeutic approaches will be presented. Results The optimum dose of virus was determined (10e5 PFU). Infiltration of neutrophils followed predominantly by CD4+ cells occurred in the cornea and the optimum therapy was determined to be topical viroptic 9 times per day for 10 days. Steroid use should be avoided. Conclusion A new model of Vaccinia keratitis has been developed that is useful for pathogenesis and therapeutic studies. Commercial interest [source] Kaposi's Varicelliform Eruption in a Patient with Healing Peribucal DermabrasionDERMATOLOGIC SURGERY, Issue 10 2000Mercedes Bestue MD Kaposi varicelliform eruption (KVE) is the name given to a distinct cutaneous eruption caused by Herpesvirus hominis types 1 and 2, vaccinia virus, or coxsackie A16 virus, superimposed on a preexisting dermatosis. A delay in diagnosing this condition may result in intense pain and rapid spread of the cutaneous lesions. We report a patient who underwent perioral dermabrasion for wrinkles who developed KVE secondary to herpes simplex virus infection. [source] Viral proteinases: targets of opportunityDRUG DEVELOPMENT RESEARCH, Issue 6 2006Chelsea M. Byrd Abstract During antiviral drug development, any essential stage of the viral life cycle can serve as a potential drug target. Since most viruses encode specific proteases whose cleavage activity is required for viral replication, and whose structure and activity are unique to the virus and not the host cell, these enzymes make excellent targets for drug development. Success using this approach has been demonstrated with the plethora of protease inhibitors approved for use against HIV. This discussion is designed to review the field of antiviral drug development, focusing on the search for protease inhibitors, while highlighting some of the challenges encountered along the way. Protease inhibitor drug discovery efforts highlighting progress made with HIV, HCV, HRV, and vaccinia virus as a model system are included. Drug Dev. Res. 67:501,510, 2006. © 2006 Wiley-Liss, Inc. [source] Effector T-cell differentiation during viral and bacterial infections: Role of direct IL-12 signals for cell fate decision of CD8+ T cellsEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2009Selina J. Keppler Abstract To study the role of IL-12 as a third signal for T-cell activation and differentiation in vivo, direct IL-12 signaling to CD8+ T cells was analyzed in bacterial and viral infections using the P14 T-cell adoptive transfer model with CD8+ T cells that lack the IL-12 receptor. Results indicate that CD8+ T cells deficient in IL-12 signaling were impaired in clonal expansion after Listeria monocytogenes infection but not after infection with lymphocytic choriomeningitis virus, vaccinia virus or vesicular stomatitis virus. Although limited in clonal expansion after Listeria infection, CD8+ T cells deficient in IL-12 signaling exhibited normal degranulation activity, cytolytic functions, and secretion of IFN-, and TNF-,. However, CD8+ T cells lacking IL-12 signaling failed to up-regulate KLRG1 and to down-regulate CD127 in the context of Listeria but not viral infections. Thus, direct IL-12 signaling to CD8+ T cells determines the cell fate decision between short-lived effector cells and memory precursor effector cells, which is dependent on pathogen-induced local cytokine milieu. [source] Vaccinia virus impairs directional migration and chemokine receptor switch of human dendritic cellsEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2007Abstract A crucial event for the induction of an anti-viral immune response is the coordinated, phenotype-dependent migration of dendritic cells (DC) to sites of infection and secondary lymphoid organs. Here we show that the vaccinia virus (VV) strains Western Reserve (WR) and modified virus Ankara (MVA) inhibit directional migration of mature DC toward the lymphoid chemokines CCL19 and CXCL12 without affecting surface expression of the respective chemokine receptors or impairing undirected cellular locomotion. Instead, infection with VV results in a deficiency of extracellular signal-regulated kinase-1 and a disturbance of intracellular calcium mobilization, indicating a viral interference with signaling events downstream of the surface chemokine receptors. In immature DC, apart from inhibiting chemokine-induced migration of infected DC, infection with both VV strains increases expression of the inflammatory chemokine receptors CCR1 and CXCR1 on non-infected bystander DC, which depends on the activity of IFN-,. Although functional, these chemokine receptors are resistant to lipopolysaccharide-induced down-regulation. In addition, VV-infected and non-infected bystander DC fail to up-regulate the lymphoid chemokine receptor CCR7 upon activation, together pointing to a disability to undergo the chemokine receptor switch. This study shows that VV targets directional migration of professional antigen-presenting cells at multiple functional levels, revealing a potent viral strategy of immune escape. See accompanying commentary: http://dx.doi.org/10.1002/eji.200737215 [source] Priming of CD8+ T cell responses by pathogens typically depends on CD70-mediated interactions with dendritic cellsEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 3 2007Anita Schildknecht Abstract The CD27/CD70-interaction has been shown to provide a costimulatory and survival signal for T cells in vitro and in vivo. Recently, CD70 expression by DC was found to be important for the priming of CD8+ T cells. We show here that blocking CD70 interactions has a significant impact on priming of CD8+ T cell responses by vaccinia virus (VV), Listeria monocytogenes and vesicular stomatitis virus (VSV) in mice. However, the priming of specific CD8+ T cells upon infection with lymphocytic choriomeningitis virus (LCMV) was only marginally reduced by CD70-blockade. Blocking of CD70 prevented CD8+ T cell priming in DIETER mice, a model in which presentation of LCMV-derived epitopes can be induced selectively in dendritic cells (DC). In contrast, CD70-CD27 interactions were not important for the priming of VSV-specific CD4+ T cells or class switch of neutralizing antibodies. As we show that priming of CD8+ T cells by the pathogens used here is dependent on antigen presentation by DC and that infection results in up-regulation of CD70 on DC, we conclude that CD70 expression on DC plays an important role in the priming of CD8+ T cells by pathogens. Moreover, the lack of CD70 cannot be completely compensated for by other costimulatory molecules. [source] Molecular epidemiology of molluscum contagiosum virus and analysis of the host-serum antibody response in Spanish HIV-negative patientsJOURNAL OF MEDICAL VIROLOGY, Issue 2 2002Monica Agromayor Abstract Molluscum contagiosum virus (MCV) lesions from Spanish human immunodeficiency virus (HIV)-negative patients were clinically examined and analyzed for virus detection and typing. In a study of 147 patients, 97 (66%) were children under 10 years, of whom 49% had atopic dermatitis. MCV lesions were morphologically indistinguishable among the different age groups, but atopic patients presented larger lesions compared with patients without the disorder. In adults, lesions were observed mainly on the genitals. MCVI was the predominant subtype. The deduced MCVI/MCVII ratio (146:1) was much higher than that found in other geographical areas. Protein preparations of the virus-induced lesions were immunoblotted with sera from 25 MCVI patients. The host-serum antibody response was weak and variable, although no significant differences were found between atopic and nonatopic patients. Three immunoreactive proteins of 74/80, 60, and 35 kDa were detected in almost all the analyzed sera. The 35 and 74/80-kDa proteins were virus specific, whereas the 60-kDa protein band was composed of a mix of human keratins. Immunoblotting of MCV lesions and vaccinia virus-infected cell extracts with either MCV patient serum or a rabbit antiserum against vaccinia virus showed no cross-reactivity of these two human poxviruses at the antigenic level. J. Med. Virol. 66:151,158, 2002. © 2002 Wiley-Liss, Inc. [source] Partially circumventing peripheral tolerance for oncogene-specific prostate cancer immunotherapyTHE PROSTATE, Issue 7 2008Yilin C. Neeley Abstract BACKGROUND Failure of cancer immunotherapy is essentially due to immunological tolerance to tumor-associated antigens (TAAs), as these antigens are also expressed in healthy tissues. METHODS Here, we used transgenic adenocarcinoma of mouse prostate (TRAMP) mice, which develop lethal prostate cancer due to prostate-specific expression of SV40 T antigen (Tag), to evaluate effects of prostatic transformation on oncogene TAA-specific tolerance and to test the possibility of breaking such tolerance using a modified recombinant vaccinia virus. RESULTS We showed that Tag expression in TRAMP mice is uniquely extra-thymic, and levels of prostatic Tag expression positively correlate with malignant transformation of the prostate. Yet, young tumor-free TRAMP mice were tolerant to Tag antigen. We therefore attempted overcoming such peripheral oncogene-specific T cell tolerance through immunization with a vaccinia construct encoding Tag immunogenic epitopes. This vaccination modality showed that oncogene-specific tolerance was successfully overcome by effective in vivo priming of Tag-specific cytotoxic T cells (CTLs). However, this was restricted to young TRAMP mice. Tag-specific CTL from "tumor naïve" young TRAMP mice showed significant anti-tumor efficacy in vivo by eliminating established heterotopic prostate tumors and prolonging survival in SCID mice harboring Tag-expressing tumors. In contrast, older TRAMP mice with established prostate tumors exhibited oncogene-specific tolerance as evidenced by failure to generate Tag-specific CTL following Tag-specific immunization. CONCLUSIONS Peripheral tolerance can be overcome for effective anti-tumor therapy following oncogene-specific immunization. However, this ability to elicit oncogene-specific CTL is impeded in the tumor-bearing host, in the context of increased oncogene expression associated with tumor progression. Prostate 68: 715,727, 2008. © 2008 Wiley-Liss, Inc. [source] African swine fever virus induces filopodia-like projections at the plasma membraneCELLULAR MICROBIOLOGY, Issue 11 2006Nolwenn Jouvenet Summary When exiting the cell vaccinia virus induces actin polymerization and formation of a characteristic actin tail on the cytosolic face of the plasma membrane, directly beneath the extracellular particle. The actin tail acts to propel the virus away from the cell surface to enhance its cell -to-cell spread. We now demonstrate that African swine fever virus (ASFV), a member of the Asfarviridae family, also stimulates the polymerization of actin at the cell surface. Intracellular ASFV particles project out at the tip of long filopodia-like protrusions, at an average rate of 1.8 µm min,1. Actin was arranged in long unbranched parallel arrays inside these virus-tipped projections. In contrast to vaccinia, this outward movement did not involve recruitment of Grb2, Nck1 or N-WASP. Actin polymerization was not nucleated by virus particles in transit to the cell periphery, and projections were not produced when the secretory pathway was disrupted by brefeldin A treatment. Our results show that when ASFV particles reach the plasma membrane they induce a localized nucleation of actin, and that this process requires interaction with virus-encoded and/or host proteins at the plasma membrane. We suggest that ASFV represents a valuable new model for studying pathways that regulate the formation of filopodia. [source] High-affinity human leucocyte antigen class I binding variola-derived peptides induce CD4+ T cell responses more than 30 years post-vaccinia virus vaccinationCLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2009M. Wang Summary Interferon-, secreting T lymphocytes against pox virus-derived synthetic 9-mer peptides were tested by enzyme-linked immunospot in peripheral blood of individuals vaccinated with vaccinia virus more than 30 years ago. The peptides were characterized biochemically as high-affinity human leucocyte antigen (HLA) class I binders (KD , 5 nM). However, five of the individuals tested did not show typical CD8+ T cell-mediated HLA class I-restricted responses. Instead, these donors showed CD4+ T cell-dependent responses against four of a total of eight antigenic 9-mer peptides discovered recently by our group. These latter responses were blocked specifically in the presence of anti-HLA class II antibody. We conclude that long-lived memory responses against pox virus-derived 9-mer peptides, with high binding affinity for HLA class I molecules, are mediated in some cases by CD4+ T cells and apparently restricted by HLA class II molecules. [source] |