Home About us Contact | |||
Vulnerability Assessment (vulnerability + assessment)
Selected AbstractsGetting the Scale Right: A Comparison of Analytical Methods for Vulnerability Assessment and Household-level TargetingDISASTERS, Issue 2 2001Linda Stephen This paper introduces broad concepts of vulnerability, food security and famine. It argues that the concepts and theories driving development and implementation of vulnerability assessment tools are related to their utility. The review concludes that socio-geographic scale is a key issue, and challenge. It analyses three vulnerability assessment (VA) methods, using Ethiopia as a case study. Facing the challenges of vulnerability assessment and early warning requires providing accurate information at the required scale, useful for multiple decision-makers within realistic institutional capacities. [source] Seismic vulnerability assessment using regional empirical dataEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 10 2006Ahmet Yakut Abstract This article presents a procedure developed for the seismic performance assessment of low- to mid-rise reinforced concrete buildings in Turkey. The past performance of reinforced concrete buildings during major earthquakes have been compiled and analysed comprehensively using statistical procedures in order to study the empirical correlation between the significant damage inducing parameters and the observed damage. A damage database of nearly 500 representative buildings experiencing the 1999 Kocaeli and Düzce earthquakes have been used and discriminant functions expressing damage score in terms of six damage inducing parameters have been developed. In order to extrapolate the procedure to other regions that are likely to be subjected to major earthquakes a new approach that takes into account different local soil conditions, site-to-source distance and the magnitude of the earthquake has been introduced. The procedure has been applied to a pilot area in Istanbul to estimate expected damage distribution under a credible scenario earthquake. Copyright © 2006 John Wiley & Sons, Ltd. [source] Groundwater vulnerability assessment, risk mapping, and nitrate evaluation in a small agricultural watershed: Using the DRASTIC model and GISENVIRONMENTAL QUALITY MANAGEMENT, Issue 4 2008Renji Remesan First page of article [source] Aquifer vulnerability assessment to heavy metals using ordinal logistic regressionGROUND WATER, Issue 2 2005Navin K.C. Twarakavi A methodology using ordinal logistic regression is proposed to predict the probability of occurrence of heavy metals in ground water. The predicted probabilities are defined with reference to the background concentration and the maximum contaminant level. The model is able to predict the occurrence due to different influencing variables such as the land use, soil hydrologic group (SHG), and surface elevation. The methodology was applied to the Sumas-Blaine Aquifer located in Washington State to predict the occurrence of five heavy metals. The influencing variables considered were (1) SHG; (2) land use; (3) elevation; (4) clay content; (5) hydraulic conductivity; and (6) well depth. The predicted probabilities were in agreement with the observed probabilities under existing conditions. The results showed that aquifer vulnerability to each heavy metal was related to different sets of influencing variables. However, all heavy metals had a strong influence from land use and SHG. The model results also provided good insight into the influence of various hydrogeochemical factors and land uses on the presence of each heavy metal. A simple economic analysis was proposed and demonstrated to evaluate the cost effects of changing the land use on heavy metal occurrence. [source] A Methodological Overview of Network Vulnerability AnalysisGROWTH AND CHANGE, Issue 4 2008ALAN T. MURRAY ABSTRACT Evaluating network infrastructures for potential vulnerabilities is an important component of strategic planning, particularly in the context of managing and mitigating service disruptions. Many methods have been proposed to facilitate such analysis, providing different interpretations of infrastructure vulnerability. The primary approaches that have been employed for network vulnerability analysis can be broadly classified as scenario-specific, strategy-specific, simulation, and mathematical modeling methodologies. Research on network vulnerability assessment has traditionally focused on one of these methodologies without consideration of the others. This article highlights the important implications of methodology for both infrastructure planning and policy development. To better understand the theoretical and practical trade-offs associated with methodology selection, this article provides a review of these categories of analysis, examining benefits and shortcomings with regard to practical planning issues and policy interpretation. [source] Remote sensing and GIS-based flood vulnerability assessment of human settlements: a case study of Gangetic West Bengal, IndiaHYDROLOGICAL PROCESSES, Issue 18 2005Joy Sanyal Abstract Flooding due to excessive rainfall in a short period of time is a frequent hazard in the flood plains of monsoon Asia. In late September 2000, a devastating flood stuck Gangetic West Bengal, India. This particular event has been selected for this study. Instead of following the conventional approach of flooded area delineation and overall damage estimation, this paper seeks to identify the rural settlements that are vulnerable to floods of a given magnitude. Vulnerability of a rural settlement is perceived as a function of two factors: the presence of deep flood water in and around the settlement and its proximity to an elevated area for temporary shelter during an extreme hydrological event. Landsat ETM+ images acquired on 30 September 2000 have been used to identify the non-flooded areas within the flooded zone. Particular effort has been made to differentiate land from water under cloud shadow. ASTER digital elevation data have been used to assess accuracy and rectify the classified image. The presence of large numbers of trees around rural settlements made it particularly difficult to extract the flooded areas from their spectral signatures in the visible and infrared bands. ERS-1 synthetic aperture radar data are found particularly useful for extracting the settlement areas surrounded by trees. Finally, all information extracted from satellite imageries are imported into ArcGIS, and spatial analysis is carried out to identify the settlements vulnerable to river inundation. Copyright © 2005 John Wiley & Sons, Ltd. [source] Development of the ecohydrological model SWIM for regional impact studies and vulnerability assessmentHYDROLOGICAL PROCESSES, Issue 3 2005Valentina Krysanova Abstract In this paper the ecohydrological model SWIM developed for regional impact assessment is presented, and examples of approaches to climate and land use change impact studies are described. SWIM is a continuous-time semi-distributed ecohydrological model, integrating hydrological processes, vegetation, nutrients (nitrogen and phosphorus) and sediment transport at the river basin scale. Its spatial disaggregation scheme has three levels: (1) basin, (2) sub-basins and (3) hydrotopes within sub-basins. The model was extensively tested and validated for hydrological processes, nitrogen dynamics, crop yield and erosion (mainly in mesoscale sub-basins of the German part of the Elbe River basin). After appropriate validation in representative sub-basins, the model can be applied at the regional scale for impact studies. Particular interest in the global change impact studies is given to effects of expected changes in climate and land use on hydrological processes and agro-ecosystems, including water balance components, water quality and crop yield. This paper (a) introduces the reader to the class of process-based ecohydrological catchment scale models, (b) introduces SWIM as one such model, and (c) presents two examples of impact studies performed with SWIM for the federal state of Brandenburg (Germany), which overlaps with the lowland part of the Elbe drainage area. The impact studies provide a better understanding of the complex interactions between climate, hydrological processes and vegetation, and improve our potential adaptation to the expected changes. Copyright © 2005 John Wiley & Sons, Ltd. [source] A screening tool for vulnerability assessment of pesticide leaching to groundwater for the islands of Hawaii, USAPEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 4 2007Fredrik Stenemo Abstract This paper describes an updated version of a screening tool for groundwater vulnerability assessment to evaluate pesticide leaching to groundwater, based on a revised version of the attenuation factor. The tool has been implemented in a geographical information system (GIS) covering the major islands of the state of Hawaii, USA. The Hawaii Department of Agriculture currently uses the tool in their pesticide evaluation process as a first-tier screening tool. The basic soil properties and pesticide properties necessary to compute the index, and estimates of their uncertainty, are included in the GIS. Uncertainties in soil and pesticide properties are accounted for using first-order uncertainty analysis. Classifications of pesticides as ,likely', ,uncertain' or ,unlikely' to leach are made on the basis of the uncertainty and a comparison of the revised attenuation factor with values and uncertainties of two reference chemicals. The reference chemicals represent what are considered to be a ,leachable' and a ,non-leachable' pesticide under Hawaii conditions. It is concluded that the tool is suitable for screening new and already used pesticides for the islands of Hawaii. However, the tool is associated with uncertainties that are not accounted for, so a conservative approach with respect to interpretation of the results and selection of pesticide parameters used in the tool is recommended. Copyright © 2007 Society of Chemical Industry [source] A review of climate risk information for adaptation and development planningINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 9 2009R. L. Wilby Abstract Although the use of climate scenarios for impact assessment has grown steadily since the 1990s, uptake of such information for adaptation is lagging by nearly a decade in terms of scientific output. Nonetheless, integration of climate risk information in development planning is now a priority for donor agencies because of the need to prepare for climate change impacts across different sectors and countries. This urgency stems from concerns that progress made against Millennium Development Goals (MDGs) could be threatened by anthropogenic climate change beyond 2015. Up to this time the human signal, though detectable and growing, will be a relatively small component of climate variability and change. This implies the need for a twin-track approach: on the one hand, vulnerability assessments of social and economic strategies for coping with present climate extremes and variability, and, on the other hand, development of climate forecast tools and scenarios to evaluate sector-specific, incremental changes in risk over the next few decades. This review starts by describing the climate outlook for the next couple of decades and the implications for adaptation assessments. We then review ways in which climate risk information is already being used in adaptation assessments and evaluate the strengths and weaknesses of three groups of techniques. Next we identify knowledge gaps and opportunities for improving the production and uptake of climate risk information for the 2020s. We assert that climate change scenarios can meet some, but not all, of the needs of adaptation planning. Even then, the choice of scenario technique must be matched to the intended application, taking into account local constraints of time, resources, human capacity and supporting infrastructure. We also show that much greater attention should be given to improving and critiquing models used for climate impact assessment, as standard practice. Finally, we highlight the over-arching need for the scientific community to provide more information and guidance on adapting to the risks of climate variability and change over nearer time horizons (i.e. the 2020s). Although the focus of the review is on information provision and uptake in developing regions, it is clear that many developed countries are facing the same challenges. Copyright © 2009 Royal Meteorological Society [source] |