Home About us Contact | |||
Useful Protocol (useful + protocol)
Selected AbstractsRuthenium-Mediated Oxidation under Buffered Conditions: A Simple and Useful Protocol for the Synthesis of Norbornyl ,-Diketones with Acid Sensitive FunctionalitiesADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 6 2009Faiz Ahmed Khan Abstract The supported ruthenium-catalyzed oxidation of the 1,2-dihaloalkene moiety in tetrahalonorbornyl derivatives possessing acid labile functionalities to afford the corresponding ,-diketones is demonstrated. The protocol was successfully applied in the synthesis of a cyclopenta-annulated ,-lactone derived from D -mannitol. [source] Congenic method in the chick limb buds by electroporationDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 6 2008Takayuki Suzuki Electroporation is a powerful tool with which to study limb development. Limb development, however, remains an intricate series of events, requiring the precise dissection of developmental processes using relevant transgenes. In this review, we describe the anatomy of the limb field as the basis of targeted electroporation, and specific expression vectors are discussed. We share a useful protocol for electroporation of chick limb buds, and the expression pattern of enhanced green fluorescent protein in the limb buds is used to demonstrate relevant embryonic patterning. Finally, useful trouble-shooting techniques are described. [source] IDENTIFICATION AND CLONING OF AMPLIFIED FRAGMENT LENGTH POLYMORPHISM MARKERS LINKED TO THE MATING TYPE LOCUS OF CHLAMYDOMONAS REINHARDTII (CHLOROPHYTA)JOURNAL OF PHYCOLOGY, Issue 3 2001Ralf Werner Amplified fragment length polymorphism (AFLP) markers have been widely used to generate molecular maps of plant species, including crops and cereals. We report on a useful protocol to identify AFLPs from Chlamydomonas reinhardtii Dangeard with digoxigenin labeled primers. Although Chlamydomonas has a small genome with a high GC content, we could detect polymorphic bands that led to the identification of several AFLP markers linked to the mating type locus of Chlamydomonas. Three of these markers were isolated from the gel, reamplified, and cloned. The clones were sequenced, and the insertion of the correct fragment was verified in AFLP gels and in Southern blots. One marker showed sequence identity to parts of the fus1 gene, known to be unique in the plus mating type. We also converted some of the AFLP markers into sequence tagged site markers, which allows a fast and convenient screening of progeny of crosses. This procedure will be a useful and fast alternative to the conventional generation of maps for the positional cloning of genes from Chlamydomonas. [source] Electrochemical Quartz Crystal Microbalance Studies on Enzymatic Specific Activity and Direct Electrochemistry of Immobilized Glucose Oxidase in the Presence of Sodium Dodecyl Benzene Sulfonate and Multiwalled Carbon NanotubesBIOTECHNOLOGY PROGRESS, Issue 1 2008Yuhua Su The electrochemical quartz crystal microbalance (EQCM) technique was utilized to monitor in situ the adsorption of glucose oxidase (GOD) and the mixture of GOD and sodium dodecyl benzene sulfonate (SDBS) onto Au electrodes with and without modification of multiwalled carbon nanotubes (MWCNTs) or SDBS/MWCNTs composite, and the relationship between enzymatic specific activity (ESA) and direct electrochemistry of the immobilized GOD was quantitatively evaluated for the first time. Compared with the bare gold electrode at which a little GOD was adsorbed and the direct electrochemistry of the adsorbed GOD was negligible, the amount and electroactivity of adsorbed GOD were greatly enhanced when the GOD was mixed with SDBS and then adsorbed onto the SDBS/MWCNTs modified Au electrode. However, the ESA of the adsorbed GOD was fiercely decreased to only 16.1% of the value obtained on the bare gold electrode, and the portion of adsorbed GOD showing electrochemical activity exhibited very low enzymatic activity, demonstrating that the electroactivity and ESA of immobilized GOD responded oppositely to the presence of MWCNTs and SDBS. The ESA results obtained from the EQCM method were well supported by conventional UV-vis spectrophotometry. The direct electrochemistry of redox proteins including enzymes as a function of their biological activities is an important concern in biotechnology, and this work may have presented a new and useful protocol to quantitatively evaluate both the electroactivity and ESA of trace immobilized enzymes, which is expected to find wider applications in biocatalysis and biosensing fields. [source] Determination of the secondary structure of proteins in different environments by FTIR-ATR spectroscopy and PLS regressionBIOPOLYMERS, Issue 11 2008Yeqiu Wang Abstract The secondary structures of proteins (,-helical, ,-sheet, ,-turn, and random coil) in the solid state and when bound to polymer beads, containing immobilized phenyl and butyl ligands such as those as commonly employed in hydrophobic interaction chromatography, have been investigated using FTIR-ATR spectroscopy and partial least squares (PLS) methods. Proteins with known structural features were used as models, including 12 proteins in the solid state and 7 proteins adsorbed onto the hydrophobic surfaces. A strong PLS correlation was achieved between predictions derived from the experimental data for 4 proteins adsorbed onto the phenyl-modified beads and reference data obtained from the X-ray crystallographic structures with r2 values of 0.9974, 0.9864, 0.9924, and 0.9743 for ,-helical, ,-sheet, ,-turn, and random coiled structures, respectively. On the other hand, proteins adsorbed onto the butyl sorbent underwent greater secondary structural changes compared to the phenyl sorbent as evidenced from the poorer PLS r2 values (r2 are 0.9658, 0.9106, 0.9571, and 0.9340). The results thus indicate that the secondary structures for these proteins were more affected by the butyl sorbent, whereas the secondary structure remains relatively unchanged for the proteins adsorbed onto the phenyl sorbent. This study has important ramifications for understanding the nature of protein secondary structural changes following adsorption onto hydrophobic sorbent surfaces. This knowledge could also enable the development of useful protocols for enhancing the chromatographic purification of proteins in their native bioactive states. © 2008 Wiley Periodicals, Inc. Biopolymers 89: 895,905, 2008. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] |