Useful Diagnostic Marker (useful + diagnostic_marker)

Distribution by Scientific Domains


Selected Abstracts


De novo synthesis, uptake and proteolytic processing of lipocalin-type prostaglandin D synthase, ,-trace, in the kidneys

FEBS JOURNAL, Issue 23 2009
Nanae Nagata
Lipocalin-type prostaglandin D synthase (L-PGDS) is a multifunctional protein that produces prostaglandin D2 and binds and transports various lipophilic substances after secretion into various body fluids as ,-trace. L-PGDS has been proposed to be a useful diagnostic marker for renal injury associated with diabetes or hypertension, because the urinary and plasma concentrations are increased in patients with these diseases. However, it remains unclear whether urinary L-PGDS is synthesized de novo in the kidney or taken up from the blood circulation. In crude extracts of monkey kidney and human urine, we found L-PGDS with its original N-terminal sequence starting from Ala23 after the signal sequence, and also its N-terminal-truncated products starting from Gln31 and Phe34. In situ hybridization and immunohistochemical staining with monoclonal antibody 5C11, which recognized the amino-terminal Ala23,Val28 loop of L-PGDS, revealed that both the mRNA and the intact form of L-PGDS were localized in the cells of Henle's loop and the glomeruli of the kidney, indicating that L-PGDS is synthesized de novo in these tissues. However, truncated forms of L-PGDS were found in the lysosomes of tubular cells, as visualized by immunostaining with 10A5, another monoclonal antibody, which recognized the three-turn ,-helix between Arg156 and Thr173. These results suggest that L-PGDS is taken up by tubular cells and actively degraded within their lysosomes to produce the N-terminal-truncated form. Structured digital abstract ,,MINT-7266187: L-PGDS (uniprotkb:P41222) and Cathepsin D (uniprotkb:Q4R4P0) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7266176: L-PGDS (uniprotkb:P41222) and Cathepsin B (uniprotkb:Q4R5M2) colocalize (MI:0403) by fluorescence microscopy (MI:0416) [source]


Mean age-of-onset of familial alzheimer disease caused by presenilin mutations correlates with both increased A,42 and decreased A,40,,

HUMAN MUTATION, Issue 7 2006
Samir Kumar-Singh
Abstract The varied ways in which mutations in presenilins (PSEN1 and PSEN2) affect amyloid b precursor protein (APP) processing in causing early-onset familial Alzheimer disease (FAD) are complex and not yet properly understood. Nonetheless, one useful diagnostic marker is an increased ratio of Ab42 to Ab40 (Ab42/Ab40) in patients' brain and biological fluids as well as in transgenic mice and cells. We studied Ab and APP processing for a set of nine clinical PSEN mutations on a novel and highly reproducible enzyme-linked immunosorbent assay (ELISA)-based in vitro method and also sought correlation with brain Ab analyzed by image densitometry and mass spectrometry. All mutations significantly increased Ab42/Ab40 in vitro by significantly decreasing Ab40 with accumulation of APP C-terminal fragments, a sign of decreased PSEN activity. A significant increase in absolute levels of Ab42 was observed for only half of the mutations tested. We also showed that age-of-onset of PSEN1-linked FAD correlated inversely with Ab42/Ab40 (r=,0.89; P=0.001) and absolute levels of Ab42 (r=,0.83; P=0.006), but directly with Ab40 levels (r=0.69; P=0.035). These changes also partly correlated with brain Ab42 and Ab40 levels. Together, our data suggested that Ab40 might be protective by perhaps sequestering the more toxic Ab42 and facilitating its clearance. Also, the in vitro method we describe here is a valid tool for assaying the pathogenic potential of clinical PSEN mutations in a molecular diagnostic setting. Hum Mutat 27(7), 686,695, 2006. Published 2006 Wiley-Liss, Inc. [source]


Sphincter electromyography and multiple system atrophy

MUSCLE AND NERVE, Issue 1 2003
Frederick Nahm MD
Abstract Electromyographic studies of the sphincter in patients with multiple system atrophy have shown increased duration and polyphasia of motor unit potentials. These electrophysiological markers have been used to argue for the selective degeneration of sacral motor neurons in Onuf's nucleus in patients with multiple system atrophy. Studies comparing sphincter electromyographic changes in patients with multiple system atrophy and Parkinson's disease have shown significant differences between these two patient populations. Despite the controversy surrounding this claim, recent studies using quantitative electromyographic techniques support the view that reinnervation of the anal sphincter muscles may be a useful diagnostic marker for distinguishing multiple system atrophy from Parkinson's disease. A critical review of these data is needed to assess the validity and reliability of electromyographic changes in multiple system atrophy. 2003 Wiley Periodicals, Inc. Muscle Nerve 28: 18,26, 2003 [source]


Fibroblast growth factor receptor 3 mutation in voided urine is a useful diagnostic marker and significant indicator of tumor recurrence in non-muscle invasive bladder cancer

CANCER SCIENCE, Issue 1 2010
Makito Miyake
The fibroblast growth factor receptor (FGFR)-3 gene encodes a receptor tyrosine kinase that is frequently mutated in non-muscle invasive bladder cancer (NMIBC). A sensitive and quantitative assay using peptide nucleic acid-mediated real-time PCR was developed for detecting FGFR3 mutations in the urine samples and evaluated as a molecular marker for detecting intravesical recurrence of NMIBC in patients undergoing transurethral resection of bladder tumor. FGFR3 mutation was examined in tumor tissues and serially taken pre- and postoperative urine sediments in 45 NMIBC patients with a median follow up of 32 months. FGFR3 mutations were detected in 53.3% (24/45) of primary tumor tissues, among which intravesical recurrence developed in 37.5% (9/24) of cases. FGFR3 mutation in the primary tumor was not a significant prognostic indicator for recurrence, while the proportion of FGFR3 mutation (i.e. tumor cellularity was ,11%) in the preoperative urine sediments was a significant indicator for recurrence in patients with FGFR3 mutations in the primary tumors. FGFR3 mutations were detected in 78% (7/9) of postoperative urine samples from recurrent cases with FGFR3 mutations in the tumor, while no mutations were detected in the urine of 15 non-recurrent cases. Urine cytology was negative in all cases with FGFR3 mutations in the primary tumors, while the sensitivity of cytological examination was as high as 56% (5/9) in cases showing wild-type FGFR3 in the primary tumors. Urine FGFR3 mutation assay and cytological examination may be available in the future as complementary diagnostic modalities in postoperative management of NMIBC. (Cancer Sci 2009) [source]


Levels of soluble CD30 in cord blood and peripheral blood during childhood are not correlated with the development of atopic disease or a family history of atopy

CLINICAL & EXPERIMENTAL ALLERGY, Issue 11 2003
U. Holmlund
Summary Background The CD30 molecule has been linked to Th2 responses. Furthermore, elevated levels of the soluble form of CD30 (sCD30) in blood as well as of the expression of CD30 on the plasma membrane of T cells are associated with atopic disease. Objective To assess the potential usefulness of sCD30 levels as a prognostic indicator of and/or diagnostic marker for the development of atopic disease in children. Methods sCD30 levels in cord blood and peripheral blood from 36 2-year-old (10 atopic and 26 non-atopic) and 74 7-year-old (35 atopic and 39 non-atopic) children were determined employing an ELISA procedure. Atopy was diagnosed on the basis of clinical evaluation in combination with a positive skin prick test. Results No significant correlation between sCD30 levels in cord blood and the development of atopic disease at 2 or 7 years of age was observed. At 7 years of age, the circulating sCD30 levels in children with atopic disease (median 41 U/mL, range 6,503 U/mL) did not differ from the corresponding values for non-atopic subjects (median 41 U/mL, range 8,402 U/mL). The same was true for children at 2 years of age. Furthermore, the sCD30 levels of children who had developed atopic eczema/dermatitis syndrome by the age of 7 years (median 49 U/mL, range 14,503 U/mL) were not significantly elevated in comparison with those of the non-atopic children. Finally, neither sCD30 levels in cord blood nor peripheral blood at 2 or 7 years of age could be linked to a family history of atopy. Conclusion These findings indicate that the sCD30 concentration in cord blood is not a reliable prognostic indicator of, nor a useful diagnostic marker for, atopic disease in children up to 7 years of age. If such correlations do exist, they might be masked by age-dependent variations in the circulating levels of sCD30, which may reflect individual differences in the maturation of children's immunological responses. [source]