Urchin Eggs (urchin + egg)

Distribution by Scientific Domains

Kinds of Urchin Eggs

  • sea urchin egg


  • Selected Abstracts


    Calyculin-A, an inhibitor for protein phosphatases, induces cortical contraction in unfertilized sea urchin eggs

    CYTOSKELETON, Issue 4 2001
    Yukako Asano
    Abstract When an unfertilized sea urchin egg was exposed to calyculin-A (CL-A), an inhibitor of protein phosphatases, for a short period and then lysed, the cortex contracted to exclude cytoplasm and became a cup-shaped mass. We call the contracted cortex "actin cup" since actin filaments were major structural components. Electron microscopic observation revealed that the cup consisted of inner electron-dense layer, middle microfilamentous layer, and outermost granular region. Microfilaments were heavily accumulated in the inner electron-dense layer. The middle layer also contained numerous microfilaments, which were determined to be actin filaments by myosin S1 decoration, and they were aligned so that their barbed ends directed toward the outermost region. Myosin II, Arp2, Arp3, and spectrin were concentrated in the actin cup. Immuno-electron microscopy revealed that myosin II was localized to the electron-dense layer. We further found that the cortical tension of the egg increased just after application of CL-A and reached maximum within 10 min. Cytochalasin B or butanedione monoxime blocked the contraction, which suggested that both actin filaments and myosin ATPase activity were required for the contraction. Myosin regulatory light chain (MRLC) in the actin cup was shown to be phosphorylated at the activation sites Ser-19 and Thr-18, by immunoblotting with anti-phosphoepitope antibodies. The phosphorylation of MRLC was also confirmed by a 32P in vivo labeling experiment. The CL-A-induced cortical contraction may be a good model system for studying the mechanism of cytokinesis. Cell Motil. Cytoskeleton 48:245,261, 2001. 2001 Wiley-Liss, Inc. [source]


    In vivo phosphorylation of regulatory light chain of myosin II in sea urchin eggs and its role in controlling myosin localization and function during cytokinesis

    CYTOSKELETON, Issue 2 2008
    Ryota Uehara
    Abstract Phosphorylation of myosin regulatory light chain (RLC) at Ser19 (mono-phosphorylation) promotes filament assembly and enhances actin-activated ATPase activity of non-muscle myosin, while phosphorylation at both Ser19 and Thr18 (di-phosphorylation) further enhances the ATPase activity. However, it has not well been addressed which type of phosphorylation is important in regulating myosin during cytokinesis. Here, we investigated subcellular localization in sea urchin eggs of mono-phosphorylated and di-phosphorylated RLC by both quantitative biochemical and spatiotemporal cytological approaches. Mono-phosphorylated RLC was dominant in the equatorial cortex throughout the whole process of cytokinesis. Inhibition of myosin light chain kinase (MLCK) decreased mono-phosphorylated RLC both in the cortex and in the cleavage furrow, and blocked both formation and contraction of the contractile ring. Two different types of ROCK inhibitor gave inconsistent results: H1152 blocked both RLC mono-phosphorylation in the cleavage furrow and contraction of the contractile ring, while Y27632 affected neither the mono-phosphorylation nor cell division. These results suggest that there may be other targets of H1152 than ROCK, which is involved in the RLC phosphorylation in the cleavage furrow. Furthermore, it was revealed that localization of myosin heavy chain in the cleavage furrow, but not in the cortex, was perturbed by inhibition of RLC mono-phosphorylation. These results suggested that RLC mono-phosphorylation by more than two RLC kinases play a main role in regulation and localization of myosin in the dividing sea urchin eggs. Cell Motil. Cytoskeleton 2007. 2007 Wiley-Liss, Inc. [source]


    Calyculin-A, an inhibitor for protein phosphatases, induces cortical contraction in unfertilized sea urchin eggs

    CYTOSKELETON, Issue 4 2001
    Yukako Asano
    Abstract When an unfertilized sea urchin egg was exposed to calyculin-A (CL-A), an inhibitor of protein phosphatases, for a short period and then lysed, the cortex contracted to exclude cytoplasm and became a cup-shaped mass. We call the contracted cortex "actin cup" since actin filaments were major structural components. Electron microscopic observation revealed that the cup consisted of inner electron-dense layer, middle microfilamentous layer, and outermost granular region. Microfilaments were heavily accumulated in the inner electron-dense layer. The middle layer also contained numerous microfilaments, which were determined to be actin filaments by myosin S1 decoration, and they were aligned so that their barbed ends directed toward the outermost region. Myosin II, Arp2, Arp3, and spectrin were concentrated in the actin cup. Immuno-electron microscopy revealed that myosin II was localized to the electron-dense layer. We further found that the cortical tension of the egg increased just after application of CL-A and reached maximum within 10 min. Cytochalasin B or butanedione monoxime blocked the contraction, which suggested that both actin filaments and myosin ATPase activity were required for the contraction. Myosin regulatory light chain (MRLC) in the actin cup was shown to be phosphorylated at the activation sites Ser-19 and Thr-18, by immunoblotting with anti-phosphoepitope antibodies. The phosphorylation of MRLC was also confirmed by a 32P in vivo labeling experiment. The CL-A-induced cortical contraction may be a good model system for studying the mechanism of cytokinesis. Cell Motil. Cytoskeleton 48:245,261, 2001. 2001 Wiley-Liss, Inc. [source]


    Bipolar, anastral spindle development in artificially activated sea urchin eggs

    DEVELOPMENTAL DYNAMICS, Issue 5 2008
    John H. Henson
    Abstract The mitotic apparatus of the early sea urchin embryo is the archetype example of a centrosome-dominated, large aster spindle organized by means of the centriole of the fertilizing sperm. In this study, we tested the hypothesis that artificially activated sea urchin eggs possess the capacity to assemble the anastral, bipolar spindles present in many acentrosomal systems. Control fertilized Lytechinus pictus embryos and ammonia-activated eggs were immunolabeled for tubulin, centrosomal material, the spindle pole structuring protein NuMA and the mitotic kinesins MKLP1/Kinesin-6, Eg5/Kinesin-5, and KinI/Kinesin-13. Confocal imaging showed that a subset of ammonia-activated eggs contained bipolar "mini-spindles" that were anastral; displayed metaphase and anaphase-like stages; labeled for centrosomal material, NuMA, and the three mitotic kinesins; and were observed in living eggs using polarization optics. These results suggest that spindle structural and motor proteins have the ability to organize bipolar, anastral spindles in sea urchin eggs activated in the absence of the paternal centriole. Developmental Dynamics 237:1348-1358, 2008. 2008 Wiley-Liss, Inc. [source]


    Improved Comet assay for the assessment of UV genotoxicity in Mediterranean sea urchin eggs

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 5 2008
    Sarah Nahon
    Abstract Gametes and embryos of broadcast spawners are exposed to a wide range of chemical and physical stressors which may alone, or in conjunction, have serious consequences on reproductive outcomes. In this study, two Mediterranean echinoid species, Paracentrotus lividus and Sphaerechinus granularis, were chosen as models to study the genotoxicity of UV radiation (UVR) on the eggs of broadcast-spawning marine invertebrates. The single cell gel electrophoresis, or Comet assay, was successfully adapted to assess DNA strand breakage in sea urchin eggs. The results demonstrated that the genetic material of sea urchin eggs is susceptible to environmentally realistic UV exposure. The induction of DNA damage in the irradiated unfertilized eggs suggests that the previously described defense mechanisms in sea urchin eggs do not completely protect the egg's DNA against UV toxicity. Taken together, our results suggest that UV-impairment of the genetic integrity of the eggs might have a role in postfertilization failures and abnormal embryonic development. Although both species were vulnerable to UVR, embryonic development was less dramatically impaired in P.Lividus. This observation supports the postulation that species inhabiting shallower environments possess more efficient mechanisms to overcome UV-induced DNA alterations. The present demonstration of the utility and sensitivity of the Comet assay to evaluate DNA integrity in eggs from marine invertebrates opens new perspectives for monitoring the long-term effects of environmental exposure on populations and for the routine screening of substances for genotoxicity in marine systems. Environ. Mol. Mutagen., 2008. 2008 Wiley-Liss, Inc. [source]


    Fatty acid nutritional quality of sea urchin Paracentrotus lividus (Lamarck 1816) eggs and endotrophic larvae: relevance for feeding of marine larval fish

    AQUACULTURE NUTRITION, Issue 4 2009
    J.M. GAGO
    Abstract Sea urchin eggs and larvae have been suggested as potential live prey for marine fish larval feeding. This study evaluated the fatty acid composition of Paracentrotus lividus eggs, prisms and four-armed plutei, obtained from wild and captive broodstocks fed on raw diets: maize, seaweed and a combination of maize and seaweed. Amounts of essential fatty acids (EFA) for marine fish larvae [arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA)] were determined in eggs and endotrophic larvae. ARA ranged from 3.93% in eggs from combination to 18.7% in plutei from maize diets. In any developmental stage, EPA amounts were always lower than 5% for the raw diets, and DHA showed null or trace amounts including the wild diet. Thus, broodstock-prepared diets had to be formulated based on different lipid sources (Algamac, linseed oil, cod liver oil and olive oil) in order to test eggs and larvae EFA enhancement. EFA improvement was possible for all tested prepared diets. Algamac diet lead to superior EFA enhancement mainly in DHA (7.24%, 4.92% and 6.09% for eggs, prisms and plutei, respectively) followed by cod liver oil diet. Only these two lipid sources should be considered for prepared broodstock diets in order to obtain suitable live prey for fish larval feeding. [source]