Uptake Velocity (uptake + velocity)

Distribution by Scientific Domains


Selected Abstracts


Nutrient Uptake in a Large Urban River,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2007
Catherine A. Gibson
Abstract:, Small streams have been shown to be efficient in retaining nutrients and regulating downstream nutrient fluxes, but less is known about nutrient retention in larger rivers. We quantified nutrient uptake length and uptake velocity in a regulated urban river to determine the river's ability to retain nutrients associated with wastewater treatment plant (WWTP) effluent. We measured net uptake of soluble reactive phosphorus (SRP), dissolved organic phosphorus, ammonium (NH4), nitrate, and dissolved organic nitrogen in the Chattahoochee River, Atlanta, GA by following the downstream decline of nutrients and fluoride from WWTP effluent on 10 dates under low flow conditions. Uptake of all nutrients was sporadic. On many dates, there was no evidence of measurable nutrient uptake lengths within the reach; indeed, on several dates release of inorganic N and P within the sample reach led to increased nutrient export downstream. When uptake occurred, SRP uptake length was negatively correlated with total suspended solids and temperature. Uptake velocities of SRP and NH4 in the Chattahoochee River were lower than velocities in less-modified systems, but they were similar to those measured in other WWTP impacted systems. Lower uptake velocities indicate a diminished capacity for nutrient uptake. [source]


Forest age, wood and nutrient dynamics in headwater streams of the Hubbard Brook Experimental Forest, NH

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2007
Dana R. Warren
Abstract Instream processing may substantially alter nutrient export from forested watersheds. This study tested how instream uptake of N and P were affected by successional differences in the accumulation of large wood and debris dams in a 66-year chronosequence formed by five watersheds within the Hubbard Brook Experimental Forest (HBEF), NH. Nutrient enrichment releases in summer 1998 were used to measure the uptake velocities of phosphate, nitrate and ammonium for five streams within HBEF, and results indicated that uptake of PO43, was closely associated with forest age. In 2004, we quantified volume and abundance of large wood in each stream to test whether large wood abundance could be linked to nitrate uptake as well as phosphate. The volume of instream wood increased with forest age, at an apparent rate of 003 m3 (100 m),1 per year for these early to mid-successional forests (r2 = 0.95); however, debris dam frequency did not. Instead, debris dam frequency, when controlled for stream size, followed a U-shaped distribution, with high dam frequency in very young forests, low frequency in forests around 20,30 years of age and increasing dam frequency again as forests matured. Phosphate uptake velocity increased strongly with both forest age and large wood volume (r2 = 099; p < 0001 in both cases); however, nitrate and ammonium uptake were not related to either factor. We attribute the positive relationship between phosphate uptake velocity and forest age/large wood volume to increased abiotic adsorption of phosphate by the inorganic sediments retained by wood. Nitrogen uptake in these streams is primarily biologically driven and did not vary predictably with these structural features of channels. We expect wood abundance to increase in HBEF streams as the forest matures, with a subsequent increase in stream phosphate uptake capacity. Copyright 2007 John Wiley & Sons, Ltd. [source]


Nutrient Uptake in a Large Urban River,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2007
Catherine A. Gibson
Abstract:, Small streams have been shown to be efficient in retaining nutrients and regulating downstream nutrient fluxes, but less is known about nutrient retention in larger rivers. We quantified nutrient uptake length and uptake velocity in a regulated urban river to determine the river's ability to retain nutrients associated with wastewater treatment plant (WWTP) effluent. We measured net uptake of soluble reactive phosphorus (SRP), dissolved organic phosphorus, ammonium (NH4), nitrate, and dissolved organic nitrogen in the Chattahoochee River, Atlanta, GA by following the downstream decline of nutrients and fluoride from WWTP effluent on 10 dates under low flow conditions. Uptake of all nutrients was sporadic. On many dates, there was no evidence of measurable nutrient uptake lengths within the reach; indeed, on several dates release of inorganic N and P within the sample reach led to increased nutrient export downstream. When uptake occurred, SRP uptake length was negatively correlated with total suspended solids and temperature. Uptake velocities of SRP and NH4 in the Chattahoochee River were lower than velocities in less-modified systems, but they were similar to those measured in other WWTP impacted systems. Lower uptake velocities indicate a diminished capacity for nutrient uptake. [source]


Forest age, wood and nutrient dynamics in headwater streams of the Hubbard Brook Experimental Forest, NH

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2007
Dana R. Warren
Abstract Instream processing may substantially alter nutrient export from forested watersheds. This study tested how instream uptake of N and P were affected by successional differences in the accumulation of large wood and debris dams in a 66-year chronosequence formed by five watersheds within the Hubbard Brook Experimental Forest (HBEF), NH. Nutrient enrichment releases in summer 1998 were used to measure the uptake velocities of phosphate, nitrate and ammonium for five streams within HBEF, and results indicated that uptake of PO43, was closely associated with forest age. In 2004, we quantified volume and abundance of large wood in each stream to test whether large wood abundance could be linked to nitrate uptake as well as phosphate. The volume of instream wood increased with forest age, at an apparent rate of 003 m3 (100 m),1 per year for these early to mid-successional forests (r2 = 0.95); however, debris dam frequency did not. Instead, debris dam frequency, when controlled for stream size, followed a U-shaped distribution, with high dam frequency in very young forests, low frequency in forests around 20,30 years of age and increasing dam frequency again as forests matured. Phosphate uptake velocity increased strongly with both forest age and large wood volume (r2 = 099; p < 0001 in both cases); however, nitrate and ammonium uptake were not related to either factor. We attribute the positive relationship between phosphate uptake velocity and forest age/large wood volume to increased abiotic adsorption of phosphate by the inorganic sediments retained by wood. Nitrogen uptake in these streams is primarily biologically driven and did not vary predictably with these structural features of channels. We expect wood abundance to increase in HBEF streams as the forest matures, with a subsequent increase in stream phosphate uptake capacity. Copyright 2007 John Wiley & Sons, Ltd. [source]


The effect of land use on dissolved organic carbon and nitrogen uptake in streams

FRESHWATER BIOLOGY, Issue 11 2009
LAURA T. JOHNSON
Summary 1. Agricultural and urban land use may increase dissolved inorganic nitrogen (DIN) concentrations in streams and saturate biotic nutrient demand, but less is known about their impacts on the cycling of organic nutrients. To assess these impacts we compared the uptake of DIN (as ammonium, NH4+), dissolved organic carbon (DOC, as acetate), and dissolved organic nitrogen (DON, as glycine) in 18 low-gradient headwater streams in southwest Michigan draining forested, agricultural, or urban land-use types. Over 3 years, we quantified uptake in two streams in each of the three land-use types during three seasons (spring, summer and autumn). 2. We found significantly higher NH4+ demand (expressed as uptake velocity, Vf) in urban compared to forested streams and NH4+Vf was greater in spring compared to summer and autumn. Acetate Vf was significantly higher than NH4+ and glycine Vf, but neither acetate nor glycine Vf were influenced by land-use type or season. 3. We examined the interaction between NH4+ and acetate demand by comparing simultaneous short-term releases of both solutes to releases of each solute individually. Acetate Vf did not change during the simultaneous release with NH4+, but NH4+Vf was significantly higher with increased acetate. Thus, labile DOC Vf was not limited by the availability of NH4+, but NH4+Vf was limited by the availability of labile DOC. In contrast, neither glycine nor NH4+Vf changed when released simultaneously indicating either that overall N-uptake was saturated or that glycine and NH4+ uptake were controlled by different factors. 4. Our results suggest that labile DOC and DON uptake can be equivalent to, or even higher than NH4+ uptake, a solute known to be highly bioreactive, but unlike NH4+ uptake, may not differ among land-use types and seasons. Moreover, downstream export of nitrogen may be exacerbated by limitation of NH4+ uptake by the availability of labile DOC in headwater streams from the agricultural Midwestern United States. Further research is needed to identify the factors that influence cycling of DOC and DON in streams. [source]


Differing effects of substrate and non-substrate transport inhibitors on glutamate uptake reversal

JOURNAL OF NEUROCHEMISTRY, Issue 6 2001
Christopher M. Anderson
Na+ -dependent excitatory amino acid transporters (EAATs) normally function to remove extracellular glutamate from brain extracellular space, but EAATs can also increase extracellular glutamate by reversal of uptake. Effects of inhibitors on EAATs can be complex, depending on cell type, whether conditions favor glutamate uptake or uptake reversal and whether the inhibitor itself is a substrate for the transporters. The present study assessed EAAT inhibitors for their ability to inhibit glutamate uptake, act as transporter substrates and block uptake reversal in astrocyte and neuron cultures. lthreo -,-hydroxyaspartate (l -TBHA), dlthreo -,-benzyloxyaspartate (dl -TBOA), ltrans -pyrrolidine-2,4-dicarboxylic acid (ltrans -2,4-PDC) (+/,)- cis -4-methy- trans -pyrrolidine-2,4-dicarboxylic acid (cis -4-methy- trans -2,4-PDC) and lantiendo -3,4-methanopyrrolidine-2,4-dicarboxylic acid (lantiendo -3,4-MPDC) inhibited l -[14C]glutamate uptake in astrocytes with equilibrium binding constants ranging from 17 m (dl -TBOA and l -TBHA) , 43 m (cis -4-methy- trans -2,4-PDC). Transportability of inhibitors was assessed in astrocytes and neurons. While l -TBHA, ltrans -2,4-PDC, cis -4-methy- trans -2,4-PDC and lantiendo -3,4-MPDC displayed significant transporter substrate activities in neurons and astrocytes, dl -TBOA was a substrate only in astrocytes. This effect of dl -TBOA was concentration-dependent, leading to complex effects on glutamate uptake reversal. At concentrations low enough to produce minimal dl -TBOA uptake velocity (, 10 m), dl -TBOA blocked uptake reversal in ATP-depleted astrocytes; this blockade was negated at concentrations that drove substantial dl -TBOA uptake (> 10 m). These findings indicate that the net effects of EAAT inhibitors can vary with cell type and exposure conditions. [source]


RNA interference-mediated knockdown of ,-synuclein protects human dopaminergic neuroblastoma cells from MPP+ toxicity and reduces dopamine transport

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2007
Timothy M. Fountaine
Abstract The critical observation in the pathology of Parkinson's disease (PD) is that neurodegeneration is largely restricted to dopaminergic neurons that develop cytoplasmic inclusions called Lewy bodies. These aggregations contain the protein ,-synuclein. Furthermore, it is becoming apparent that ,-synuclein expression levels are a major factor in PD pathogenesis. Patients with additional copies of the ,-synuclein gene develop PD with a severity proportional to levels of ,-synuclein overexpression. Similarly, overexpression of ,-synuclein in in vitro and in vivo models has been shown to be toxic. However, little is known about the effects of reducing ,-synuclein expression in human neurons. To investigate this, we have developed a system in which levels of ,-synuclein can be acutely suppressed by using RNA interference (RNAi) in a physiologically relevant human dopaminergic cellular model. By using small interfering RNA (siRNA) molecules targeted to endogenous ,-synuclein, we achieved 80% protein knockdown. We show that ,-synuclein knockdown has no effect on cellular survival either under normal growth conditions over 5 days or in the presence of the mitochondrial inhibitor rotenone. Knockdown does, however, confer resistance to the dopamine transporter (DAT)-dependent neurotoxin N-methyl-4-phenylpyridinium (MPP+). We then demonstrate for the first time that ,-synuclein suppression decreases dopamine transport in human cells, reducing the maximal uptake velocity (Vmax) of dopamine and the surface density of its transporter by up to 50%. These results show that RNAi-mediated ,-synuclein knockdown alters cellular dopamine homeostasis in human cells and may suggest a mechanism for the increased survival in the presence of MPP+, a toxin used extensively to model Parkinson's disease. 2006 Wiley-Liss, Inc. [source]


Nutrient Uptake in a Large Urban River,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2007
Catherine A. Gibson
Abstract:, Small streams have been shown to be efficient in retaining nutrients and regulating downstream nutrient fluxes, but less is known about nutrient retention in larger rivers. We quantified nutrient uptake length and uptake velocity in a regulated urban river to determine the river's ability to retain nutrients associated with wastewater treatment plant (WWTP) effluent. We measured net uptake of soluble reactive phosphorus (SRP), dissolved organic phosphorus, ammonium (NH4), nitrate, and dissolved organic nitrogen in the Chattahoochee River, Atlanta, GA by following the downstream decline of nutrients and fluoride from WWTP effluent on 10 dates under low flow conditions. Uptake of all nutrients was sporadic. On many dates, there was no evidence of measurable nutrient uptake lengths within the reach; indeed, on several dates release of inorganic N and P within the sample reach led to increased nutrient export downstream. When uptake occurred, SRP uptake length was negatively correlated with total suspended solids and temperature. Uptake velocities of SRP and NH4 in the Chattahoochee River were lower than velocities in less-modified systems, but they were similar to those measured in other WWTP impacted systems. Lower uptake velocities indicate a diminished capacity for nutrient uptake. [source]