Home About us Contact | |||
Uptake Inhibitor (uptake + inhibitor)
Selected AbstractsEstimation of endogenous adenosine activity at adenosine receptors in guinea-pig ileum using a new pharmacological methodACTA PHYSIOLOGICA, Issue 2 2010K. F. Nilsson Abstract Aim:, Adenosine modulates neurotransmission and in the intestine adenosine is continuously released both from nerves and from smooth muscle. The main effect is modulation of contractile activity by inhibition of neurotransmitter release and by direct smooth muscle relaxation. Estimation of adenosine concentration at the receptors is difficult due to metabolic inactivation. We hypothesized that endogenous adenosine concentrations can be calculated by using adenosine receptor antagonist and agonist and dose ratio (DR) equations. Methods:, Plexus-containing guinea-pig ileum longitudinal smooth muscle preparations were made to contract intermittently by electrical field stimulation in organ baths. Schild plot regressions were constructed with 2-chloroadenosine (agonist) and 8-(p -sulfophenyl)theophylline (8-PST; antagonist). In separate experiments the reversing or enhancing effect of 8-PST and the inhibiting effect of 2-chloroadenosine (CADO) were analysed in the absence or presence of an adenosine uptake inhibitor (dilazep), and nucleoside overflow was measured by HPLC. Results:, Using the obtained DR, baseline adenosine concentration was calculated to 28 nm expressed as CADO activity, which increased dose dependently after addition of 10,6 m dilazep to 150 nm (P < 0.05). HPLC measurements yielded a lower fractional increment (80%) in adenosine during dilazep, than found in the pharmacological determination (440%). Conclusion:, Endogenous adenosine is an important modulator of intestinal neuro-effector activity, operating in the linear part of the dose,response curve. Other adenosine-like agonists might contribute to neuromodulation and the derived formulas can be used to calculate endogenous agonist activity, which is markedly affected by nucleoside uptake inhibition. The method described should be suitable for other endogenous signalling molecules in many biological systems. [source] CDP-choline increases plasma ACTH and potentiates the stimulated release of GH, TSH and LH: the cholinergic involvementFUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 5 2004Sinan Cavun Abstract In the present study, we investigated the effect of intracerebroventricular (i.c.v.) administration of cytidine-5,-diphosphate (CDP) choline on plasma adrenocorticotropin (ACTH), serum growth hormone (GH), thyroid stimulating hormone (TSH), follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels in conscious rats. The involvement of cholinergic mechanisms in these effects was also determined. In basal conditions, CDP-choline (0.5, 1.0 and 2.0 ,mol, i.c.v.) increased plasma ACTH levels dose- and time-dependently, but it did not affect the TSH, GH, FSH and LH levels. In stimulated conditions, i.c.v. administration of CDP-choline (1 ,mol, i.c.v.) produced an increase in clonidine-stimulated GH, thyrotyropin-releasing hormone (TRH)-stimulated TSH, LH-releasing hormone (LHRH)-stimulated LH, but not FSH levels. Injection of equimolar dose of choline (1 ,mol, i.c.v.) produced similar effects on hormone levels, but cytidine (1 ,mol, i.c.v.) failed to alter plasma levels of these hormones. Pretreatment with hemicholinium-3, a neuronal high affinity choline uptake inhibitor, (20 ,g, i.c.v.) completely blocked the observed hormone responses to CDP-choline. The increase in plasma ACTH levels induced by CDP-choline (1 ,mol, i.c.v.) was abolished by pretreatment with mecamylamine, a nicotinic receptor antagonist, (50 ,g, i.c.v.) but not atropine, a muscarinic receptor antagonist, (10 ,g, i.c.v.). The increase in stimulated levels of serum TSH by CDP-choline (1 ,mol, i.c.v.) was blocked by atropine but not by mecamylamine pretreatment. However, CDP-choline induced increases in serum GH and LH levels were greatly attenuated by both atropine and mecamylamine pretreatments. The results show that CDP-choline can increase plasma ACTH and produce additional increases in serum levels of TSH, GH and LH stimulated by TRH, clonidine and LHRH, respectively. The activation of central cholinergic system, mainly through the presynaptic mechanisms, was involved in these effects. Central nicotinic receptors solely mediated the increase in plasma ACTH levels while the activation of central muscarinic receptors was involved in the increase in TSH levels. Both muscarinic and nicotinic receptor activations, separately, mediated the increases in serum GH and LH levels after CDP-choline. [source] Role of calcium and ROS in cell death induced by polyunsaturated fatty acids in murine thymocytesJOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2010Aparna Prasad We investigated the mechanisms whereby omega-3 and -6 polyunsaturated fatty acids (PUFAs) cause cell death of mouse thymocytes using flow cytometry, focusing on the respective roles of intracellular calcium concentration, [Ca2+]i and reactive oxygen species (ROS). We applied the C-22, 20, and 18 carbon omega-3 (DHA, EPA, ALA) and omega-6 (DTA, ARA, and LNA) fatty acids to isolated thymocytes and monitored cell death using the DNA-binding dye, propidium iodide. When applied at 20,µM concentration, omega-3 fatty acids killed thymocytes over a period of 1,h with a potency of DHA,>,EPA,>,ALA. The omega-6 PUFAs were more potent. The C18 omega-6 fatty acid, LNA, was the most potent, followed by DHA and ARA. Cell death was always accompanied by an increase in the levels of [Ca2+]i and ROS. Both increases were in proportion to the potency of the PUFAs in inducing cell death. Removing extracellular calcium did not prevent the elevation in [Ca2+]i nor cell death. However, the intracellular calcium chelator, BAPTA, almost totally reduced both the elevation in [Ca2+]i and cell death, while vitamin E reduced the elevation in ROS and cell death. BAPTA also prevented the elevation in ROS, but vitamin E did not prevent the elevation in [Ca2+]i. Thapsigargin, which depletes endoplasmic reticulum calcium, blocked the elevation in [Ca2+]i, but CCCP, a mitochondrial calcium uptake inhibitor, did not. These results suggest that the six PUFAs we studied kill thymocytes by causing release of calcium from endoplasmic reticulum, which causes release of ROS from mitochondria which leads to cell death. J. Cell. Physiol. 225: 829,836, 2010. © 2010 Wiley-Liss, Inc. [source] Effect of methylphenidate on dopamine/DARPP signalling in adult, but not young, miceJOURNAL OF NEUROCHEMISTRY, Issue 6 2003Ryuichi Fukui Abstract Methylphenidate (MPH), a dopamine uptake inhibitor, is the most commonly prescribed drug for the treatment of attention-deficit/hyperactivity disorder (ADHD) in children. We examined the effect of MPH on dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa (DARPP-32) phosphorylation at Thr34 (PKA-site) and Thr75 (Cdk5-site) using neostriatal slices from young (14,15- and 21,22-day-old) and adult (6,8-week-old) mice. MPH increased DARPP-32 Thr34 phosphorylation and decreased Thr75 phosphorylation in slices from adult mice. The effect of MPH was blocked by a dopamine D1 antagonist, SCH23390. In slices from young mice, MPH did not affect DARPP-32 phosphorylation. As with MPH, cocaine stimulated DARPP-32 Thr34 phosphorylation in slices from adult, but not from young mice. In contrast, a dopamine D1 agonist, SKF81297, regulated DARPP-32 phosphorylation comparably in slices from young and adult mice, as did methamphetamine, a dopamine releaser. The results suggest that dopamine synthesis and the dopamine transporter are functional at dopaminergic terminals in young mice. In contrast, the lack of effect of MPH in young mice is likely attributable to immature development of the machinery that regulates vesicular dopamine release. [source] Ethanol Blocks Adenosine Uptake via Inhibiting the Nucleoside Transport System in Bronchial Epithelial CellsALCOHOLISM, Issue 5 2009Diane S. Allen-Gipson Background:, Adenosine uptake into cells by nucleoside transporters plays a significant role in governing extracellular adenosine concentration. Extracellular adenosine is an important signaling molecule that modulates many cellular functions via 4 G-protein-coupled receptor subtypes (A1, A2A, A2B, and A3). Previously, we demonstrated that adenosine is critical in maintaining airway homeostasis and airway repair and that airway host defenses are impaired by alcohol. Taken together, we hypothesized that ethanol impairs adenosine uptake via the nucleoside transport system. Methods:, To examine ethanol-induced alteration on adenosine transport, we used a human bronchial epithelial cell line (BEAS-2B). Cells were preincubated for 10 minutes in the presence and absence of varying concentrations of ethanol (EtOH). In addition, some cells were pretreated with S-(4-Nitrobenzyl)-6-thioinosine (100 ,M: NBT), a potent adenosine uptake inhibitor. Uptake was then determined by addition of [3H]-adenosine at various time intervals. Results:, Increasing EtOH concentrations resulted in increasing inhibition of adenosine uptake when measured at 1 minute. Cells pretreated with NBT effectively blocked adenosine uptake. In addition, short-term EtOH revealed increased extracellular adenosine concentration. Conversely, adenosine transport became desensitized in cells exposed to EtOH (100 mM) for 24 hours. To determine the mechanism of EtOH-induced desensitization of adenosine transport, cAMP activity was assessed in response to EtOH. Short-term EtOH exposure (10 minutes) had little or no effect on adenosine-mediated cAMP activation, whereas long-term EtOH exposure (24 hours) blocked adenosine-mediated cAMP activation. Western blot analysis of lysates from unstimulated BEAS-2B cells detected a single 55 kDa band indicating the presence of hENT1 and hENT2, respectively. Real-time RT-PCR of RNA from BEAS-2B revealed transcriptional expression of ENT1 and ENT2. Conclusions:, Collectively, these data reveal that acute exposure of cells to EtOH inhibits adenosine uptake via a nucleoside transporter, and chronic exposure of cells to EtOH desensitizes the adenosine transporter to these inhibitory effects of ethanol. Furthermore, our data suggest that inhibition of adenosine uptake by EtOH leads to an increased extracellular adenosine accumulation, influencing the effect of adenosine at the epithelial cell surface, which may alter airway homeostasis. [source] Antidepressants in the Treatment of Neuropathic PainBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 6 2005Søren H. Sindrup Tricyclic antidepressants and anticonvulsants have long been the mainstay of treatment of this type of pain. Tricyclic antidepressants may relieve neuropathic pain by their unique ability to inhibit presynaptic reuptake of the biogenic amines serotonin and noradrenaline, but other mechanisms such as N-methyl-D-aspartate receptor and ion channel blockade probably also play a role in their pain-relieving effect. The effect of tricyclic antidepressants in neuropathic pain in man has been demonstrated in numerous randomised, controlled trials, and a few trials have shown that serotonin noradrenaline and selective serotonin reuptake inhibitor antidepressants also relieve neuropathic pain although with lower efficacy. Tricyclic antidepressants will relieve one in every 2,3 patients with peripheral neuropathic pain, serotonin noradrenaline reuptake inhibitors one in every 4,5 and selective serotonin reuptake inhibitors one in every 7 patients. Thus, based on efficacy measures such as numbers needed to treat, tricyclic antidepressants tend to work better than the anticonvulsant gabapentin and treatment options such as tramadol and oxycodone, whereas the serotonin noradrenaline reuptake inhibitor venlafaxine appears to be equally effective with these drugs and selective serotonin reuptake inhibitors apparently have lower efficacy. Head-to-head comparisons between antidepressants and the other analgesics are lacking. Contraindications towards the use of tricyclic antidepressants and low tolerability in general of this drug class , may among the antidepressants , favour the use of the serotonin noradrenaline reuptake inhibitors. A recent study on bupropion, which is a noradrenaline and dopamine uptake inhibitor, indicated a surprisingly high efficacy of this drug in peripheral neuropathic pain. In conclusion, antidepressants represent useful tools in neuropathic pain treatment and must still be considered as first line treatments of neuropathic pain. However, without head-to-head comparisons between antidepressants and other analgesics, it is not possible to provide real evidence-based treatment algorithms for neuropathic pain. [source] The pharmacology of the acute hyperthermic response that follows administration of 3,4-methylenedioxymethamphetamine (MDMA, ,ecstasy') to ratsBRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2002Annis O Mechan The pharmacology of the acute hyperthermia that follows 3,4-methylenedioxymethamphetamine (MDMA, ,ecstasy') administration to rats has been investigated. MDMA (12.5 mg kg,1 i.p.) produced acute hyperthermia (measured rectally). The tail skin temperature did not increase, suggesting that MDMA may impair heat dissipation. Pretreatment with the 5-HT1/2 antagonist methysergide (10 mg kg,1), the 5-HT2A antagonist MDL 100,907 (0.1 mg kg,1) or the 5-HT2C antagonist SB 242084 (3 mg kg,1) failed to alter the hyperthermia. The 5-HT2 antagonist ritanserin (1 mg kg,1) was without effect, but MDL 11,939 (5 mg kg,1) blocked the hyperthermia, possibly because of activity at non-serotonergic receptors. The 5-HT uptake inhibitor zimeldine (10 mg kg,1) had no effect on MDMA-induced hyperthermia. The uptake inhibitor fluoxetine (10 mg kg,1) markedly attenuated the MDMA-induced increase in hippocampal extracellular 5-HT, also without altering hyperthermia. The dopamine D2 antagonist remoxipride (10 mg kg,1) did not alter MDMA-induced hyperthermia, but the D1 antagonist SCH 23390 (0.3 , 2.0 mg kg,1) dose-dependently antagonized it. The dopamine uptake inhibitor GBR 12909 (10 mg kg,1) did not alter the hyperthermic response and microdialysis demonstrated that it did not inhibit MDMA-induced striatal dopamine release. These results demonstrate that in vivo MDMA-induced 5-HT release is inhibited by 5-HT uptake inhibitors, but MDMA-induced dopamine release may not be altered by a dopamine uptake inhibitor. It is suggested that MDMA-induced hyperthermia results not from MDMA-induced 5-HT release, but rather from the increased release of dopamine that acts at D1 receptors. This has implications for the clinical treatment of MDMA-induced hyperthermia. British Journal of Pharmacology (2002) 135, 170,180; doi:10.1038/sj.bjp.0704442 [source] Effect of DOV 102,677 on the Volitional Consumption of Ethanol by Myers' High Ethanol-Preferring RatALCOHOLISM, Issue 11 2007Brian A. McMillen Background:, Inhibitors of monoamine neurotransmitter transporters are well established as antidepressants. However, the evidence that single (serotonin) or dual (serotonin,norepinephrine) neurotransmitter uptake inhibitors can treat ethanol abuse, either as a comorbidity with depression or as a separate entity, is inconsistent. Drugs that have, in addition, the ability to inhibit dopamine uptake may have an advantage in the treatment of alcohol abuse. Therefore, the inhibitor of norepinephrine, serotonin and dopamine uptake, DOV 102,677, was tested for its effects on the volitional consumption of ethanol by an ethanol-preferring rat strain. Methods:, Myers' high ethanol-preferring rats were screened by a 10-day, 3 to 30% step-up test and then given free access to the preferred concentration of ethanol in a 3-bottle choice task. Consumption of ethanol (g/kg), water, food, and body weight were measured daily during a 3-day predrug treatment period, a 3-day treatment period, and a 3-day posttreatment period. Additional Sprague,Dawley rats were observed for 24 hours for the behavioral effects of 2.0 mg/kg s.c. reserpine after a 30-minute pretreatment with different doses of DOV 102,677. Results:, The triple monoamine uptake inhibitor DOV 102,677 dose-dependently decreased the volitional consumption of ethanol by as much as 71.2% (20 mg/kg i.p., b.i.d.) over 3 days of administration. This effect carried over into the posttreatment period. Similarly, the proportion of ethanol to total fluids consumed declined by 66.2% (20 mg/kg s.c., b.i.d.), while food consumption and body weight were unaltered. In contrast, amperozide (2 mg/kg i.p., b.i.d.) suppressed the amount of ethanol consumed by 56%, while naltrexone (5 mg/kg i.p., b.i.d.) was without effect. DOV 102,677 (40 mg/kg s.c.) inhibited reserpine-induced akinesia and ptosis, but not hypothermia in Sprague,Dawley rats, consistent with its transient inhibition of serotonin transport, and more long-lived inhibition of norepinephrine and dopamine uptake. Conclusions:, DOV 102,677 significantly decreased the volitional consumption of ethanol with minimal alterations in the intake of food or on body weight in an ethanol-preferring rat strain, suggesting that triple reuptake inhibitors may find utility in treating alcohol abuse. [source] New potent and selective inhibitors of anandamide reuptake with antispastic activity in a mouse model of multiple sclerosisBRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2006Alessia Ligresti We previously reported that the compound O-2093 is a selective inhibitor of the reuptake of the endocannabinoid anandamide (AEA). We have now re-examined the activity of O-2093 in vivo and synthesized four structural analogs (O-2247, O-2248, O-3246, and O-3262), whose activity was assessed in: (a) binding assays carried out with membranes from cells overexpressing the human CB1 and CB2 receptors; (b) assays of transient receptor potential of the vanilloid type-1 (TRPV1) channel functional activity (measurement of [Ca2+]i); (c) [14C]AEA cellular uptake and hydrolysis assays in rat basophilic leukaemia (RBL-2H3) cells; (d) the mouse ,tetrad' tests (analgesia on a hot plate, immobility on a ,ring', rectal hypothermia and hypolocomotion in an open field); and (e) the limb spasticity test in chronic relapsing experimental allergic encephalomyelitis (CREAE) mice, a model of multiple sclerosis (MS). O-2093, either synthesized by us or commercially available, was inactive in the ,tetrad' up to a 20 mg kg,1 dose (i.v.). Like O-2093, the other four compounds exhibited low affinity in CB1 (Ki from 1.3 to >10 ,M) and CB2 binding assays (1.3 Characterization of an anandamide degradation system in prostate epithelial PC-3 cells: synthesis of new transporter inhibitors as tools for this studyBRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2004Lidia Ruiz-Llorente The response of anandamide is terminated by a carrier-mediated transport followed by degradation catalyzed by the cloned enzyme fatty acid amidohydrolase (FAAH). In this study, we provide biochemical data showing an anandamide uptake process and the expression of FAAH in human prostate. Anandamide was accumulated in PC-3 cells by a saturable and temperature-dependent process. Kinetic studies of anandamide uptake, determined in the presence of cannabinoid and vanilloid antagonists, revealed apparent parameters of KM=4.7±0.2 ,M and Vmax=3.3±0.3 pmol min,1 (106 cells),1. The accumulation of anandamide was moderately inhibited by previously characterized anandamide transporter inhibitors (AM404, UCM707 and VDM11) but was unaffected by inhibitors of other lipid transport systems (phloretin or verapamil) and moderately affected by the FAAH inhibitor methyl arachidonyl fluorophosphonate. The presence of FAAH in human prostate epithelial PC-3 cells was confirmed by analyzing its expression by Western blot and measuring FAAH activity. To further study the structural requirements of the putative carrier, we synthesized a series of structurally different compounds 1,8 and evaluated their capacity as uptake inhibitors. They showed different inhibitory capacity in PC-3 cells, with (9Z,12Z)- N -(fur-3-ylmethyl)octadeca-9,12-dienamide (4, UCM119) being the most efficacious, with maximal inhibition and IC50 values of 49% and 11.3±0.5 ,M, respectively. In conclusion, PC-3 cells possess a complete inactivation system for anandamide formed by an uptake process and the enzyme FAAH. These results suggest a possible physiological function of anandamide in the prostate, reinforcing the role of endocannabinoid system as a neuroendocrine modulator. British Journal of Pharmacology (2004) 141, 457,467. doi:10.1038/sj.bjp.0705628 [source] The pharmacology of the acute hyperthermic response that follows administration of 3,4-methylenedioxymethamphetamine (MDMA, ,ecstasy') to ratsBRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2002Annis O Mechan The pharmacology of the acute hyperthermia that follows 3,4-methylenedioxymethamphetamine (MDMA, ,ecstasy') administration to rats has been investigated. MDMA (12.5 mg kg,1 i.p.) produced acute hyperthermia (measured rectally). The tail skin temperature did not increase, suggesting that MDMA may impair heat dissipation. Pretreatment with the 5-HT1/2 antagonist methysergide (10 mg kg,1), the 5-HT2A antagonist MDL 100,907 (0.1 mg kg,1) or the 5-HT2C antagonist SB 242084 (3 mg kg,1) failed to alter the hyperthermia. The 5-HT2 antagonist ritanserin (1 mg kg,1) was without effect, but MDL 11,939 (5 mg kg,1) blocked the hyperthermia, possibly because of activity at non-serotonergic receptors. The 5-HT uptake inhibitor zimeldine (10 mg kg,1) had no effect on MDMA-induced hyperthermia. The uptake inhibitor fluoxetine (10 mg kg,1) markedly attenuated the MDMA-induced increase in hippocampal extracellular 5-HT, also without altering hyperthermia. The dopamine D2 antagonist remoxipride (10 mg kg,1) did not alter MDMA-induced hyperthermia, but the D1 antagonist SCH 23390 (0.3 , 2.0 mg kg,1) dose-dependently antagonized it. The dopamine uptake inhibitor GBR 12909 (10 mg kg,1) did not alter the hyperthermic response and microdialysis demonstrated that it did not inhibit MDMA-induced striatal dopamine release. These results demonstrate that in vivo MDMA-induced 5-HT release is inhibited by 5-HT uptake inhibitors, but MDMA-induced dopamine release may not be altered by a dopamine uptake inhibitor. It is suggested that MDMA-induced hyperthermia results not from MDMA-induced 5-HT release, but rather from the increased release of dopamine that acts at D1 receptors. This has implications for the clinical treatment of MDMA-induced hyperthermia. British Journal of Pharmacology (2002) 135, 170,180; doi:10.1038/sj.bjp.0704442 [source]
| |