Upper Side (upper + side)

Distribution by Scientific Domains


Selected Abstracts


Six major steps in animal evolution: are we derived sponge larvae?

EVOLUTION AND DEVELOPMENT, Issue 2 2008
Claus Nielsen
SUMMARY A review of the old and new literature on animal morphology/embryology and molecular studies has led me to the following scenario for the early evolution of the metazoans. The metazoan ancestor, "choanoblastaea," was a pelagic sphere consisting of choanocytes. The evolution of multicellularity enabled division of labor between cells, and an "advanced choanoblastaea" consisted of choanocytes and nonfeeding cells. Polarity became established, and an adult, sessile stage developed. Choanocytes of the upper side became arranged in a groove with the cilia pumping water along the groove. Cells overarched the groove so that a choanocyte chamber was formed, establishing the body plan of an adult sponge; the pelagic larval stage was retained but became lecithotrophic. The sponges radiated into monophyletic Silicea, Calcarea, and Homoscleromorpha. Homoscleromorph larvae show cell layers resembling true, sealed epithelia. A homoscleromorph-like larva developed an archenteron, and the sealed epithelium made extracellular digestion possible in this isolated space. This larva became sexually mature, and the adult sponge-stage was abandoned in an extreme progenesis. This eumetazoan ancestor, "gastraea," corresponds to Haeckel's gastraea. Trichoplax represents this stage, but with the blastopore spread out so that the endoderm has become the underside of the creeping animal. Another lineage developed a nervous system; this "neurogastraea" is the ancestor of the Neuralia. Cnidarians have retained this organization, whereas the Triploblastica (Ctenophora+Bilateria), have developed the mesoderm. The bilaterians developed bilaterality in a primitive form in the Acoelomorpha and in an advanced form with tubular gut and long Hox cluster in the Eubilateria (Protostomia+Deuterostomia). It is indicated that the major evolutionary steps are the result of suites of existing genes becoming co-opted into new networks that specify new structures. The evolution of the eumetazoan ancestor from a progenetic homoscleromorph larva implies that we, as well as all the other eumetazoans, are derived sponge larvae. [source]


Study on flow past two spheres in tandem arrangement using a local mesh refinement virtual boundary method

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 5 2005
Jian-Feng Zou
Abstract A local mesh refinement virtual boundary method based on a uniform grid is designed to study the transition between the flow patterns of two spheres in tandem arrangement for Re=250. For a small gap (L/D=1.5), the flow field is axisymmetric. As the spacing ratio increases to 2.0, the pressure gradient induces the circumferential fluid motion and a plane-symmetric flow is constructed through a regular bifurcation. For L/D,2.5, the vortices are periodically shed from the right sphere, but the planar symmetry remains. The case for L/D=3.0 is picked up to give a detail investigation for the unsteady flow. The shedding frequency of vortical structure from the upper side of the right sphere is found to be double of the frequency of the lower side. With the flow spectra of various gaps given, the underlying competitive mechanism between the two shedding frequencies is studied and a critical spacing gap is revealed. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Deficit Targeting Strategies: Fiscal Consolidation and the Probability Distribution of Deficits under the Stability Pact

JCMS: JOURNAL OF COMMON MARKET STUDIES, Issue 3 2003
A.J. Hughes Hallett
Using stochastic simulations, this article analyses the probability distribution of a country's deficit ratio under fixed exchange rates and a variety of monetary and fiscal policy rules. The purpose is to show how the probability of an ,excessive deficit', defined by Europe's Stability Pact as a deficit to GDP ratio above 3 per cent, varies with different deficit targets and policy rules. Using a macro model, we find that when subject to historically consistent shocks, these fiscal ratios typically have a wide distribution, with fat tails and significantly longer tails on the upper side. That means fiscal targets may have to be country-specific and conservative, and that fiscal policy has to be forward-looking to keep the probability of excessive deficits below acceptable limits. [source]


An Overview of the Biology of Reaction Wood Formation

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 2 2007
Sheng Du
Abstract Reaction wood possesses altered properties and performs the function of regulating a tree's form, but it is a serious defect in wood utility. Trees usually develop reaction wood in response to a gravistimulus. Reaction wood in gymnosperms is referred to as compression wood and develops on the lower side of leaning stems or branches. In arboreal, dicotyledonous angiosperms, however, it is called tension wood and is formed on the upper side of the leaning. Exploring the biology of reaction wood formation is of great value for the understanding of the wood differentiation mechanisms, cambial activity, gravitropism, and the systematics and evolution of plants. After giving an outline of the variety of wood and properties of reaction wood, this review lays emphasis on various stimuli for reaction wood induction and the extensive studies carried out so far on the roles of plant hormones in reaction wood formation. Inconsistent results have been reported for the effects of plant hormones. Both auxin and ethylene regulate the formation of compression wood in gymnosperms. However, the role of ethylene may be indirect as exogenous ethylene cannot induce compression wood formation. Tension wood formation is mainly regulated by auxin and gibberellin. Interactions among hormones and other substances may play important parts in the regulation of reaction wood formation. [source]


Spatial variation of soil test phosphorus in a long-term grazed experimental grassland fieldWeijun Fu1, 2

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 3 2010
Hubert Tunney
Abstract The spatial variation of soil test P (STP) in grassland soils is becoming important because of the use of STP as a basis for policies such as the recently EU-introduced Nitrate Directive. This research investigates the spatial variation of soil P in grazed grassland plots with a long-term (38 y) experiment. A total of 326 soil samples (including 14 samples from an adjacent grass-wood buffer zone) were collected based on a 10 × 10 m2 grid system. The samples were measured for STP and other nutrients. The results were analyzed using conventional statistics, geostatistics, and a geographic information system (GIS). Soil test P concentrations followed a lognormal distribution, with a median of 5.30 mg L,1 and a geometric mean of 5.35 mg L,1. Statistically significant (p < 0.01) positive correlation between STP and pH was found. Spatial clusters and spatial outliers were detected using the local Moran's I index (a local indicator of spatial association) and were mapped using GIS. An obvious low-value spatial-cluster area was observed on the plots that received zero-P fertilizer application from 1968 to 1998 and a large high-value spatial-cluster area was found on the relatively high-P fertilizer application plots (15,kg ha,1 y,1). The local Moran's I index was also effective in detecting spatial outliers, especially at locations close to spatial-cluster areas. To obtain a reliable and stable spatial structure, semivariogram of soil-P data was produced after elimination of spatial outliers. A spherical model with a nugget effect was chosen to fit the experimental semivariogram. The spatial-distribution map of soil P was produced using the kriging interpolation method. The interpolated distribution map was dominated by medium STP values, ranging from 3 mg to 8 mg L,1. An evidently low-P-value area was present in the upper side of the study area, as zero or short-term P fertilizer was applied on the plots. Meanwhile, high-P-value area was located mainly on the plots receiving 15,kg P ha,1 y,1 (for 38 y) as these plots accumulated excess P after a long-term P-fertilizer spreading. The high- or low-value patterns were in line with the spatial clusters. Geostatistics, combined with GIS and the local spatial autocorrelation index, provides a useful tool for analyzing the spatial variation in soil nutrients. [source]


Tension wood as a model for functional genomics of wood formation

NEW PHYTOLOGIST, Issue 1 2004
Gilles Pilate
Summary Wood is a complex and highly variable tissue, the formation of which is developmentally and environmentally regulated. In reaction to gravitropic stimuli, angiosperm trees differentiate tension wood, a wood with specific anatomical, chemical and mechanical features. In poplar the most significant of these features is an additional layer that forms in the secondary wall of tension wood fibres. This layer is mainly constituted of cellulose microfibrils oriented nearly parallel to the fibre axis. Tension wood formation can be induced easily and strongly by bending the stem of a tree. Located at the upper side of the bent stem, tension wood can be compared with the wood located on its lower side. Therefore tension wood represents an excellent model for studying the formation of xylem cell walls. This review summarizes results recently obtained in the field of genomics on tension wood. In addition, we present an example of how the application of functional genomics to tension wood can help decipher the molecular mechanisms responsible for cell wall characteristics such as the orientation of cellulose microfibrils. [source]


Phototropic bending of non-elongating and radially growing woody stems results from asymmetrical xylem formation

PLANT CELL & ENVIRONMENT, Issue 5 2007
JUN MATSUZAKI
ABSTRACT Active phototropic bending of non-elongating and radially growing portion of stems (woody stems) has not been previously documented, whereas negative gravitropic bending is well known. We found phototropic bending in woody stems and searched for the underlying mechanism. We inclined 1-year-old Quercus crispula Blume seedlings and unilaterally illuminated them from a horizontal direction perpendicular to (,normal' illumination) or parallel to (,parallel' illumination) the inclination azimuth. With normal illumination, active phototropic bending and xylem formation could be evaluated separately from the negative gravitropic response and vertical deflection resulting from the weight of the seedlings. One-year-old stems with normal illumination bent significantly, with asymmetrical xylem formation towards the illuminated upper surface and side of the stem, whereas those with parallel illumination showed non-significant lateral bending, with asymmetrical xylem formation only on the upper side. A mechanical model was built on the assumption that a bending moment resulted from the asymmetrical xylem formation during phototropic bending of the woody stems. The model fitted the relationship between the observed spatial distributions of the xylem and the observed lateral bending, and thus supported the hypothesis that phototropic bending of woody stems results from asymmetrical xylem formation, as such occurs during gravitropism. [source]


Experimental Investigation of thermal convection in an inclined narrow gap II

PROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2009
Daniel Rubes
In the past decade the development in micro technology has experienced great progress, what made the knowledge of the flow behavior in small cavities fundamentally interesting. Our experimental contribution describes the measured temperature and velocity fields in a fluid containing inclined cavity with the dimensions 17 × 6 × 24 mm3 (w × d × h). Using PIV/T, we can determine the velocity and temperature distribution in the cavity simultaneously. The chamber is illuminated with a white light sheet of 1 mm. A 20% glycerin-water mixture is examined. The lower side is heated to 46.2°C, while the upper side has a constant temperature of 26°C. In this work we present the measured velocity and temperature fields of the fluid at different angles of the cavity orientation with respect to the direction of gravity in the stationary state. This is a continuation of last years presentation [1] in the sense that the temperature difference has been substantially increased. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Establishment of a matrix-associated transepithelial resistance invasion assay to precisely measure the invasive potential of synovial fibroblasts

ARTHRITIS & RHEUMATISM, Issue 9 2009
Christina Wunrau
Objective Synovial fibroblasts (SFs) contribute to several aspects of the pathogenesis of rheumatoid arthritis (RA) and have been implicated most prominently in the progressive destruction of articular cartilage. Targeting the invasive phenotype of RASFs has therefore gained increasing attention, but the precise measurement of their invasive capacity and the evaluation of potential treatment effects constitute a challenge that needs to be addressed. This study used a novel in vitro invasion assay based on the breakdown of transepithelial electrical resistance to determine the course of fibroblast invasion into extracellular matrix. Methods A matrix-associated transepithelial resistance invasion (MATRIN) assay was used to assess SFs from patients with RA in comparison with SFs from patients with osteoarthritis (OA). The SFs were grown on a commercially available collagen mix that was placed onto the upper side of a Transwell polycarbonate membrane. In addition, freshly isolated cartilage extracts were studied to assess the conditions in vivo. Under this membrane, a monolayer of MDCK-C7 cells was seeded to create a high electrical resistance. Results Invasion of fibroblasts into the matrix affected the integrity of the MDCK-C7 monolayer and led to a measurable decrease and subsequent breakdown of electrical resistance. Unlike in the assay with OASFs, which did not achieve a breakdown of resistance up to 72 hours, RASFs exhibited a pronounced invasiveness in this assay, with a 50% breakdown after 42 hours. Treatment of fibroblasts with either a matrix metalloproteinase inhibitor or antibodies against ,1 integrin significantly reduced the invasiveness of RASFs. Conclusion The MATRIN assay is a valuable and sensitive biologic assay system that can be used to determine precisely the invasive potential of RASFs in vitro, and thus would be suitable for screening anti-invasion compounds. [source]


Helicoverpa armigera (Hübner): can wheat stubble protect cotton plants against attack?

AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 1 2006
Amanda J Cleary
Abstract, When investigating strategies for Helicoverpa armigera (Hübner) control, it is important to understand oviposition behaviour. Cotton (Gossypium hirsutum) was sown into standing wheat (Triticum astivum L.) stubble in a closed arena to investigate the effect of stubble on H. armigera moth behaviour and oviposition. Infrared cameras were used to track moths and determine whether stubble acted as a physical barrier or provided camouflage to cotton plants, thereby reducing oviposition. Searching activity was observed to peak shortly before dawn (03:00 and 04:00 h) and remained high until just after dawn (4 h window). Moths spent more time resting on cotton plants than spiralling above them, and the least time flying across the arena. While female moths spent more time searching for cotton plants growing in wheat stubble, the difference in oviposition was not significant. As similar numbers of eggs were laid on cotton plants with stubble (3.5/plant SE ±0.87) and without stubble (2.5/plant SE ±0.91), wheat stubble does not appear to provide camouflage to cotton plants. There was no significant difference in the location of eggs deposited on cotton plants with and without stubble, although more eggs were laid on the tops of cotton leaves in wheat stubble. As the spatial and temporal distribution of eggs laid on the cotton plant is a crucial component of population stability, eggs laid on the upper side of leaves on cotton plants may be more prone to fatalities caused by environmental factors such as wind and rain. Therefore, although stubble did not influence the number of eggs laid, it did affect their distribution on the plant, which may result in increased mortality of eggs on cotton plants sown into standing wheat stubble. [source]