Home About us Contact | |||
Upper Plate (upper + plate)
Selected AbstractsThe tectonic regime along the Andes: Present-day and Mesozoic regimesGEOLOGICAL JOURNAL, Issue 1 2010Victor A. Ramos Abstract The analyses of the main parameters controlling the present Chile-type and Marianas-type tectonic settings developed along the eastern Pacific region show four different tectonic regimes: (1) a nearly neutral regime in the Oregon subduction zone; (2) major extensional regimes as the Nicaragua subduction zone developed in continental crust; (3) a Marianas setting in the Sandwich subduction zone with ocean floored back-arc basin with a unique west-dipping subduction zone and (4) the classic and dominant Chile-type under compression. The magmatic, structural and sedimentary behaviours of these four settings are discussed to understand the past tectonic regimes in the Mesozoic Andes based on their present geological and tectonic characteristics. The evaluation of the different parameters that governed the past and present tectonic regimes indicates that absolute motion of the upper plate relative to the hotspot frame and the consequent trench roll-back velocity are the first order parameters that control the deformation. Locally, the influences of the trench fill, linked to the dominant climate in the forearc, and the age of the subducted oceanic crust, have secondary roles. Ridge collisions of seismic and seismic oceanic ridges as well as fracture zone collisions have also a local outcome, and may produce an increase in coupling that reinforces compressional deformation. Local strain variations in the past and present Andes are not related with changes in the relative convergence rate, which is less important than the absolute motion relative to the Pacific hotspot frame, or changes in the thermal state of the upper plate. Changes in the slab dip, mainly those linked to steepening subduction zones, produce significant variations in the thermal state, that are important to generate extreme deformation in the foreland. Copyright © 2009 John Wiley & Sons, Ltd. [source] Hydromagnetic flow and heat transfer of a conducting Casson fluid in a rectangular channelINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 4 2006Hazem Ali Attia Abstract The transient hydromagnetic flow of an electrically conducting viscous incompressible non-Newtonian Casson fluid bounded by two parallel non-conducting plates is studied with heat transfer considering the Hall effect. An external uniform magnetic field is applied perpendicular to the plates and the fluid motion is subjected to a pressure gradient in the axial direction. The lower plate is stationary and the upper plate is suddenly set into motion and simultaneously suddenly isothermally heated to a temperature other than the lower plate temperature. Numerical solutions are obtained for the governing momentum and energy equations taking the Joule and viscous dissipations into consideration. The effect of the Hall term and the parameter describing the non-Newtonian behaviour on both the velocity and temperature distributions are studied. Copyright © 2005 John Wiley & Sons, Ltd. [source] A numerical approach revealing the impact of rheological properties on mouthfeel caused by foodINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 6 2007Katrin Mathmann Summary In contrast to the static chemoreceptor-related flavour perception, texture of food capable of flow is detected dynamically with oral mechanoreceptors while the food is manipulated in the mouth. The resulting sensation called mouthfeel strongly depends on the different physical properties of food. Aim of the current study is to determine numerically the occurring fluid mechanical forces in food suspensions using a simplified tongue-palate model system consisting of two parallel plates. For this purpose, the equations of fluid and particle motion are numerically solved by using structured overlapping grids. In the computational experiment, a density neutral fluid system between the plates is compressed by moving the upper plate with constant velocity down to the other one. It has been found that suspended particles move with the fluid flow but have only minor effect on the global flow field in the applied concentration. [source] Ultrahigh-pressure metamorphism and exhumation of garnet peridotite in Pohorje, Eastern AlpsJOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2006M. JANÁK Abstract New evidence for ultrahigh-pressure metamorphism (UHPM) in the Eastern Alps is reported from garnet-bearing ultramafic rocks from the Pohorje Mountains in Slovenia. The garnet peridotites are closely associated with UHP kyanite eclogites. These rocks belong to the Lower Central Austroalpine basement unit of the Eastern Alps, exposed in the proximity of the Periadriatic fault. Ultramafic rocks have experienced a complex metamorphic history. On the basis of petrochemical data, garnet peridotites could have been derived from depleted mantle rocks that were subsequently metasomatized by melts and/or fluids either in the plagioclase-peridotite or the spinel-peridotite field. At least four stages of recrystallization have been identified in the garnet peridotites based on an analysis of reaction textures and mineral compositions. Stage I was most probably a spinel peridotite stage, as inferred from the presence of chromian spinel and aluminous pyroxenes. Stage II is a UHPM stage defined by the assemblage garnet + olivine + low-Al orthopyroxene + clinopyroxene + Cr-spinel. Garnet formed as exsolutions from clinopyroxene, coronas around Cr-spinel, and porphyroblasts. Stage III is a decompression stage, manifested by the formation of kelyphitic rims of high-Al orthopyroxene, aluminous spinel, diopside and pargasitic hornblende replacing garnet. Stage IV is represented by the formation of tremolitic amphibole, chlorite, serpentine and talc. Geothermobarometric calculations using (i) garnet-olivine and garnet-orthopyroxene Fe-Mg exchange thermometers and (ii) the Al-in-orthopyroxene barometer indicate that the peak of metamorphism (stage II) occurred at conditions of around 900 °C and 4 GPa. These results suggest that garnet peridotites in the Pohorje Mountains experienced UHPM during the Cretaceous orogeny. We propose that UHPM resulted from deep subduction of continental crust, which incorporated mantle peridotites from the upper plate, in an intracontinental subduction zone. Sinking of the overlying mantle and lower crustal wedge into the asthenosphere (slab extraction) caused the main stage of unroofing of the UHP rocks during the Upper Cretaceous. Final exhumation was achieved by Miocene extensional core complex formation. [source] Regional variation in exhumation and strain rate of the high-pressure Sambagawa metamorphic rocks in central Shikoku, south-west JapanJOURNAL OF METAMORPHIC GEOLOGY, Issue 7 2002K. Yagi Abstract Regional variation in the P,T path of the Sambagawa metamorphic rocks, central Shikoku, Japan has been inferred from compositional zoning of metamorphic amphibole. Rocks constituting the northern part (Saruta River area) exhibit a hairpin type P,T path, where winchite/actinolite grew at the prograde stage, the peak metamorphism was recorded by the growth of barroisite to hornblende and sodic amphibole to winchite/actinolite grew at the retrograde stage. In the southern part (Asemi River area), rocks exhibit a clockwise type P,T path, where barroisite to hornblende core is rimmed by winchite to actinolite. The difference in P,T path could suggest a faster exhumation rate (i.e. more rapid decompression) in the southern than in the northern part. On the other hand, physical conditions of deformation during the exhumation stage have been independently inferred from microstructures in deformed quartz. Recrystallized quartz grains in rocks from the low-grade (chlorite and garnet) zones are much more stretched in the southern part (aspect ratio , 4.0) than in the northern part (aspect ratio< 4.0), indicating a higher strain rate in the former than in the latter. These facts may indicate that the exhumation and strain rates are correlated (i.e. the exhumation rate increases with increasing the strain rate). The difference in the exhumation rate inferred from amphibole zoning between the northern and southern parts could be explained by an extensional model involving normal faulting, where the lower plate can be exhumed faster than the upper plate due to the displacement along the fault. Furthermore, the model may explain the positive correlation between the exhumation and strain rates, because the lower plate tended to support more stress than the upper plate. [source] DEVELOPMENT OF DYNAMIC MODULUS AND CELL OPENING OF DOUGH DURING BAKINGJOURNAL OF TEXTURE STUDIES, Issue 1 2005AJAY PAL SINGH ABSTRACT The dynamic shear modulus (elastic and viscous modulus) development of dough during baking was studied. Flooded parallel plate geometry was used to monitor the rheological changes of commercially available canned doughs (bread dough, bun dough and biscuit dough). The normal force exerted on the upper plate by the expanding dough was measured to study the cell-opening event. The dough-baking process was simulated in a rheometer oven. The morphology of baked dough was studied using a scanning electron microscope to elucidate the effect of ingredients and process parameters on the properties of the final baked product. Three stages of modulus development were observed during the baking process: bubble growth and packing, rapid expansion/starch gelatinization and final curing. The cell opening coincided with the sudden rise in modulus caused by starch gelatinization. The rate at which starch gelatinization takes place controls the temperature of the cell opening. The type and concentration of various ingredients have a greater effect on the modulus and on the cell opening than the heating rates. Frequency dependence was observed during baking, but the effect on modulus development diminished at higher frequencies. [source] Tectonic Controls on the Formation of the Liwu Cu-rich Sulfide Deposit in the Jianglang Dome, S W ChinaRESOURCE GEOLOGY, Issue 2 2003Dan-Ping Yan Abstract. The Liwu Cu-rich sulfide deposit occurs within the Jianglang dome in the eastern margin of the Tibetan plateau. The dome consists of a core, a middle slab and a cover sequence. The main deposit is hosted in the core with minor ore bodies in the middle slab. The protolith of the core consists of clastic sedimentary rocks with inter-layered volcanic rocks. All of the ore bodies are substantially controlled by an extensional detachment fault system. The ore bodies within the core are distributed along the S2 foliation in the hinge of recumbent fold (D2), whereas ore bodies with en echelon arrangement are controlled by the mylonitic foliation of the lower detachment fault. Ore bodies within the middle slab are oriented with their axes parallel to the mylonitic foliation. Pyrite and pyrrhotite from the ores contain Co ranging from 37 to 1985 ppm, Ni from 2.5 to 28.1 ppm, and Co/Ni ratios from 5 to 71. These sulfides have ,34S values ranging from 1.5 to 7.5 % whereas quartz separates have ,18O values of 11.9 and 14.3 % and inclusion fluid in quartz has ,D value of-88.1 %. These features suggest that the deposit was of hydrothermal origin. Two ore-forming stages are recognized in the evolution of the Jianglang dome. (1) A low-temperature ore-forming process, during the tectonic transport of the upper plate above the lower detachment, and the initial phase of the footwall updom-ing at 192,177 Ma. (2) A medium-temperature ore-forming stage, related to the final structural development of the initial detachment at 131,81Ma. Within the core, the ore bodies of the first stage were uplifted to, or near, the brittle/ductile horizon where the ore-forming metals were re-concentrated and enriched. A denudation stage in which a compressional tectonic event produced eastward thrusting overprinted the previous structures, and finally denuded the deposit. The Liwu Cu-rich sulfide deposit was formed during a regional extensional tectonic event and is defined as a tectono-strata-bound hydrothermal ore deposit. [source] Application of General Shear Theory to the Study of Formation Mechanism of the Metamorphic Core Complex: A Case Study of Xiaoqinling in Central ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2000ZHANG Jinjiang Abstract: The kinematic vorticity number and strain of the mylonitic zone related to the detachment fault increase from ESE to WNW along the moving direction of the upper plate of the Xiaoqinling metamorphic core complex (XMCC) and the geometry of quartz c -axis fabrics changes progressively from crossed girdles to single girdles in the same direction. Therefore, pure shear is dominant in the ESE part of the XMCC while simple shear becomes increasingly important towards WNW. However, the shear type does not change with the strain across the shear zone, thus the variation of shear type is of significance in indicating the formation mechanism. The granitic plutons within the XMCC came from the deep source and their emplacement was an active and forceful upwelling prior to the detachment faulting. The PTt path demonstrates that magmatism is an important cause for the formation of the XMCC. The formation mechanism of the XMCC is supposed to be active plutonism and passive detachment. Crustal thickening and magmatic doming caused necking extension with pure shear, and magmatic heating and doming resulted in detachment extension with simple shear and formed the XMCC. [source] |