Home About us Contact | |||
Upper Crust (upper + crust)
Selected AbstractsThe upper continental crust, an aquifer and its fluid: hydaulic and chemical data from 4 km depth in fractured crystalline basement rocks at the KTB test siteGEOFLUIDS (ELECTRONIC), Issue 1 2005I. STOBER Abstract Detailed information on the hydrogeologic and hydraulic properties of the deeper parts of the upper continental crust is scarce. The pilot hole of the deep research drillhole (KTB) in crystalline basement of central Germany provided access to the crust for an exceptional pumping experiment of 1-year duration. The hydraulic properties of fractured crystalline rocks at 4 km depth were derived from the well test and a total of 23100 m3 of saline fluid was pumped from the crustal reservoir. The experiment shows that the water-saturated fracture pore space of the brittle upper crust is highly connected, hence, the continental upper crust is an aquifer. The pressure,time data from the well tests showed three distinct flow periods: the first period relates to wellbore storage and skin effects, the second flow period shows the typical characteristics of the homogeneous isotropic basement rock aquifer and the third flow period relates to the influence of a distant hydraulic border, probably an effect of the Franconian lineament, a steep dipping major thrust fault known from surface geology. The data analysis provided a transmissivity of the pumped aquifer T = 6.1 × 10,6 m2 sec,1, the corresponding hydraulic conductivity (permeability) is K = 4.07 × 10,8 m sec,1 and the computed storage coefficient (storativity) of the aquifer of about S = 5 × 10,6. This unexpected high permeability of the continental upper crust is well within the conditions of possible advective flow. The average flow porosity of the fractured basement aquifer is 0.6,0.7% and this range can be taken as a representative and characteristic values for the continental upper crust in general. The chemical composition of the pumped fluid was nearly constant during the 1-year test. The total of dissolved solids amounts to 62 g l,1 and comprise mainly a mixture of CaCl2 and NaCl; all other dissolved components amount to about 2 g l,1. The cation proportions of the fluid (XCa approximately 0.6) reflects the mineralogical composition of the reservoir rock and the high salinity results from desiccation (H2O-loss) due to the formation of abundant hydrate minerals during water,rock interaction. The constant fluid composition suggests that the fluid has been pumped from a rather homogeneous reservoir lithology dominated by metagabbros and amphibolites containing abundant Ca-rich plagioclase. [source] Fluid injection and surface deformation at the KTB location: modelling of expected tilt effectsGEOFLUIDS (ELECTRONIC), Issue 1 2005T. JAHR Abstract This investigation is indented to explore the relationship between changes in pore fluid pressure and deformation of the land surface induced by a large-scale injection experiment at the KTB site. Deformation will be monitored by ASKANIA borehole tiltmeters at five locations. During the year 2003, a network of borehole tiltmeters was installed, data transmission links established and tested, and recording of tilt data started. Our first main interest was to receive data sets of all stations well before the injection experiment to start in May 2004, to be able to evaluate local site effects. Thus, the separation of injection-induced effects will be more reliable. Principal 3D numerical modelling (poro-elastic modelling and investigations, using the finite element method, FEM) of poro-elastic behaviour showed that significant tilt amplitudes can be expected during controlled fluid injection. Observed deformation will be investigated within the framework of the fluid flow behaviour and resulting deformation. Two models have been used: a coupled hydro geomechanical finite element model (abaqus) and, as a first step, also a multi-layered poro-elastic crust (poel). With the numerical model two effects can be quantified: (i) the deformation of the upper crust (tilt measurements) and (ii) the spatial distribution and the changes of material properties in the KTB area. The main aim of the project is to improve the knowledge of coupled geomechanic,hydraulic processes and to quantify important parameters. Thus, the understanding of fracture-dominated changes of the hydrogeological parameters will be enhanced, geomechanical parameter changes and the heterogeneity of the parameter field quantified. In addition, the induced stress field variation can be explained, which is believed to be mainly responsible for the increase of local seismic activity. Here, we introduce the tiltmeter array at the KTB site, the modelling for a poro-elastic crust and the preliminary FEM modelling. [source] Physics-based GPS data inversion to estimate three-dimensional elastic and inelastic strain fieldsGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2010Akemi Noda SUMMARY The Earth's crust is macroscopically treated as a linear elastic body, but it includes a number of defects. The occurrence of inelastic deformation such as brittle fracture at the defects brings about elastic deformation in the surrounding regions. The crustal deformation observed through geodetic measurements is the sum of the inelastic deformation as source and the elastic deformation as effect. On such a basic idea, we created a theory of physics-based strain analysis with general source representation by moment tensor, and developed an inversion method to separately estimate 3-D elastic and inelastic strain fields from GPS data. In this method, first, the optimum distribution of moment density tensor is determined from observed GPS data by using Akaike's information criterion. Then, the elastic and inelastic strain fields are obtained from the optimum moment tensor distribution by theoretical computation and direct conversion with elastic compliance tensor, respectively. We applied the inversion method to GPS horizontal velocity data, and succeeded in separately estimating 3-D elastic and inelastic strain rate fields in the Niigata,Kobe transformation zone, central Japan. As for the surface patterns of total strain, the present results of 3-D physics-based inversion analysis accord with the previous results of 2-D geometric inversion analysis. From the 3-D patterns of the inverted elastic and inelastic strain fields, we revealed that the remarkable horizontal contraction in the Niigata,Kobe transformation zone is elastic and restricted near the surface, but the remarkable shear deformation is inelastic and extends over the upper crust. [source] Lithospheric structure of an active backarc basin: the Taupo Volcanic Zone, New ZealandGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2006Antony Harrison SUMMARY Seismic data from both explosive and earthquake sources have been used to model the crustal and upper-mantle velocity structure beneath the Taupo Volcanic Zone (TVZ), an active backarc basin in central North Island, New Zealand. Volcanic sediments with P -wave velocities of 2.0,3.5 km s,1 reach a maximum thickness of 3 km beneath the central TVZ. Underlying these sediments to 16 km depth is material with velocities of 5.0,6.5 km s,1, interpreted as quartzo-feldspathic crust. East and west of the TVZ, crust with similar velocities is found to depths of 30 and 25 km, respectively. Beneath the TVZ, material with P -wave velocities of 6.9,7.3 km s,1 is found from 16 to 30 km depth and is interpreted as heavily intruded or underplated lower crust. The base of the crust at 30 km depth under the TVZ is marked by a strong seismic reflector, interpreted as the Moho. Modelling of arrivals from deep (>40 km) earthquakes near the top of the underlying subducting Pacific Plate reveals a region with low mantle velocities of 7.4,7.8 km s,1 beneath the crust of the TVZ. This region of low mantle velocities is best explained by the presence of partially hydrated upper mantle, resulting from dehydration of hydrous minerals (e.g. serpentinite) carried down by the underlying subducting plate. Within the lower crust beneath the TVZ, a region of high (0.34) Poisson's ratio is observed, indicating the presence of at least 1 per cent partial melt. This melt probably fractionates and assimilates crustal material before some of it migrates into the upper crust, where it provides a source for the voluminous rhyolitic magmas of the TVZ. [source] A preliminary study of crustal structure in Taiwan region using receiver function analysisGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2004Kwang-Hee Kim SUMMARY Selected teleseismic data observed at temporary and permanent broad-band stations have been analysed using the receiver function method in order to investigate the very complex crustal structure in Taiwan region. Very significant azimuthal variations of radial and transverse receiver function responses from broad-band stations could be attributed to, among other things, the sampling of incoming seismic waves across the nearby subduction zone, a subsurface dipping interface, or a localized anisotropic region. A mid-crust discontinuity, interpreted as the Conrad discontinuity, can be identified at 18,20 km depth beneath TATO and TPUB stations in the Western Foothills, but is absent beneath the two nearby stations SSLB and TDCB in the Central Mountain Range. The separation of upper and lower crust beneath the Western Foothills and the steady increase in crustal velocity as a function of depth across the entire thicker crust beneath the Central Mountain Range suggest that the tectonic evolution of the crust may be significantly different for these two adjacent regions. Although a ,thin-skinned' model may be associated with the tectonic evolution of the upper crust of the Western Foothills and Western Coastal Plain, a ,thick-skinned' or ,lithospheric deformation' model can probably be applied to explain the crustal evolution of the Central Mountain Range. A trend of crustal thinning from east (50,52 km) to west (28,32 km) is in very good agreement with the results from two east,west-trending deep seismic profiles obtained using airgun sources. The thinner crust (20,30 km) beneath TWB1 station in northeastern Taiwan can be associated with the high-heat-flow backarc opening at the western terminus of the Okinawa trough behind the subduction of the Philippine Sea plate. The relatively simple crustal structure beneath KMNB station, offshore southeastern China, depicts typical continental crust, with the Moho depth at 28,32 km. An apparent offset of the thickest Moho beneath NACB station from the topographic high in the central Central Mountain Range suggests that the Taiwan orogeny has probably not reached its isostatic status. [source] Crustal structure of central and northern Iceland from analysis of teleseismic receiver functionsGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2000Fiona A. Darbyshire We present results from a teleseismic receiver function study of central and northern Iceland, carried out during the period 1995,1998. Data from eight broad-band seismometers installed in the SIL network operated by the Icelandic Meteorological Office were used for analysis. Receiver functions for each station were generated from events for a wide range of backazimuths and a combination of inversion and forward modelling was used to infer the crustal structure below each station. The models generated show a considerable variation in the nature and thickness of the crust across Iceland. The thinnest crust (20,21 km) is found in the northern half of the Northern Volcanic Zone approximately 120 km north of the centre of the Iceland mantle plume. Thicker crust (24,30 km) is found elsewhere in northern and central Iceland and the thickest crust (37 km) is found close to the plume centre. Velocity,depth profiles show a distinct division of the crust into two main sections, an upper high-velocity-gradient section of thickness 2,8 km and a lower crustal section with small or zero overall velocity gradient. The thickness of the upper crust correlates with the tectonic structure of Iceland; the upper crust is thickest on the flanks of the northern and central volcanic rift zones and thinnest close to active or extinct central volcanoes. Below the Krafla central volcano in northeastern Iceland the receiver function models show a prominent low-velocity zone at 10,15 km depth with minimum shear wave velocities of 2.0,2.5 km s,1. We suggest that this feature results from the presence of partially molten sills in the lower crust. Less prominent low-velocity zones found in other regions of Iceland may arise from locally high temperatures in the crust or from acidic intrusive bodies at depth. A combination of the receiver function results and seismic refraction results constrains the crustal thickness across a large part of Iceland. Melting by passive decompression of the hot mantle below the rift zone in northern Iceland forms a crust of thickness ,20 km. In contrast, the larger crustal thickness below central Iceland probably arises from enhanced melt production due to active upwelling in the plume core. [source] Hydraulic pathways in the crystalline rock of the KTBGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2000Günter Zimmermann Fracture systems and fluid pathways must be analysed in order to understand the dynamical processes in the upper crust. Various deterministic as well as stochastic fracture networks in the depth section of the Franconian Lineament (6900 to 7140 m), which appears as a brittle ductile shear zone and prominent seismic reflector, were modelled to simulate the hydraulic situation at the two boreholes of the Continental Deep Drilling Program (KTB). They led to estimations of the hydraulic permeability in crystalline rock. The geometrical parameters of the fractures, such as fracture locations and orientations, were determined from structural borehole measurements, which create an image of the borehole wall. The selection of potentially open fractures was decided according to the stress field. Only fractures with the dip direction (azimuth) of the fracture plane perpendicular to the maximum horizontal stress field were assumed to be open. The motivation for this assumption is the fact that the maximum horizontal stress is higher than the vertical stress from the formation, indicating that the state of stress is a strike-slip faulting. Therefore, the probability of open fractures due to this particular stress field at the KTB sites is enhanced. Length scales for fracture apertures and extensions were stochastically varied and calibrated by hydraulic experiments. The mean fracture aperture was estimated to be 25 ,m, assuming an exponential distribution, with corresponding permeability in the range of 10,16 m2. Similar results were also obtained for log-normal and normal distributions, with a variation of permeability of the order of a factor of 2. The influence of the fracture length on permeability of the stochastic networks was also studied. Decreasing the fracture length beyond a specific threshold of 10 m led to networks with vanishing connectivity and hence vanishing permeability. Therefore, we assume a mean fracture length exceeding the threshold of 10 m as a necessary assumption for a macroscopic hydraulically active fracture system at the KTB site. The calculated porosity due to the fracture network is of the order of 10,3 per cent, which at first sight contradicts the estimated matrix porosity of 1 to 2 per cent from borehole measurements and core measurements. It can be concluded from these results, however, that if the fluid transport is due to a macroscopic fracture system, only very low porosity is needed for hydraulic flow with permeabilities up to several 10,16 m2, and hence the contribution of matrix porosity to the hydraulic transport is of a subordinate nature. [source] Crustal versus asthenospheric relaxation and post-seismic deformation for shallow normal faulting earthquakes:the Umbria,Marche (central Italy) caseGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2000R. Riva Summary Following a normal mode approach for a stratified viscoelastic earth, we investigate the effects induced by shallow normal faulting earthquakes, on surface post-seismic vertical displacement and velocity at the surface, when stress relaxation occurs in the crust or in the asthenosphere. The modelled earthquake is a moderate one characteristic of some slowly deforming plate boundaries in the central Mediterranean region. We focus on the Umbria,Marche (central Italy) region where deep seismic reflection studies (CROP03) and the 1997 earthquake sequence clearly show a seismogenic layer decoupled from the lower crust by a sizeable transition zone. Accordingly, the crust is subdivided into three layers: an elastic upper crust, a transition zone and a low-viscosity lower crust. The fault is embedded in the upper crust. The layered viscoelastic structure of the crust and mantle imposes a pattern and scale on the modelled coseismic and post-seismic deformation with a major contribution from the transition crustal zone and low-viscosity lower crust, stress relaxation in the mantle being negligible. We show that significant vertical deformation rates of the order of 1 mm yr, 1 could be expected for a shallow and moderate event such as the recent Umbria,Marche earthquake for viscosity values of 1019 and 1018 Pa s in the crustal transition zone and lower crust, respectively. [source] Three-dimensional VP and VP,/VS models of the upper crust in the Friuli area (northeastern Italy)GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2000G. F. Gentile 3-D images of P velocity and P - to S -velocity ratio have been produced for the upper crust of the Friuli area (northeastern Italy) using local earthquake tomography. The data consist of 2565 P and 930 S arrival times of high quality. The best-fitting VP and VP,/VS 1-D models were computed before the 3-D inversion. VP was measured on two rock samples representative of the investigated upper layers of the Friuli crust. The tomographic VP model was used for modelling the gravity anomalies, by converting the velocity values into densities along three vertical cross-sections. The computed gravity anomalies were optimized with respect to the observed gravity anomalies. The crust investigated is characterized by sharp lateral and deep VP and VP,/VS anomalies that are associated with the complex geological structure. High VP,/VS values are associated with highly fractured zones related to the main faulting pattern. The relocated seismicity is generally associated with sharp variations in the VP,/VS anomalies. The VP images show a high-velocity body below 6 km depth in the central part of the Friuli area, marked also by strong VP,/VS heterogeneities, and this is interpreted as a tectonic wedge. Comparison with the distribution of earthquakes supports the hypothesis that the tectonic wedge controls most of the seismicity and can be considered to be the main seismogenic zone in the Friuli area. [source] Interval velocity and thickness estimate from wide-angle reflection dataGEOPHYSICAL PROSPECTING, Issue 4 2001Roberto De Franco A method to estimate interval velocities and thickness in a horizontal isotropic layered medium from wide-angle reflection traveltime curves is presented. The method is based on a relationship between the squared reflection traveltime differences and the squared offset differences relative to two adjacent reflectors. The envelope of the squared-time versus offset-difference curves, for rays with the same ray parameter, is a straight line, whose slope is the inverse of the square of the interval velocity and whose intercept is the square of the interval time. The method yields velocity and thickness estimates without any knowledge of the overlying stratification. It can be applied to wide-angle reflection data when either information on the upper crust and/or refraction control on the velocity is not available. Application to synthetic and real data shows that the method, used together with other methods, allows us to define a reliable 1D starting model for estimating a depth profile using either ray tracing or another technique. [source] Theoretical and numerical analyses of convective instability in porous media with temperature-dependent viscosityINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 10 2003Ge Lin Abstract Exact analytical solutions of the critical Rayleigh numbers have been obtained for a hydrothermal system consisting of a horizontal porous layer with temperature-dependent viscosity. The boundary conditions considered are constant temperature and zero vertical Darcy velocity at both the top and bottom of the layer. Not only can the derived analytical solutions be readily used to examine the effect of the temperature-dependent viscosity on the temperature-gradient driven convective flow, but also they can be used to validate the numerical methods such as the finite-element method and finite-difference method for dealing with the same kind of problem. The related analytical and numerical results demonstrated that the temperature-dependent viscosity destabilizes the temperature-gradient driven convective flow and therefore, may affect the ore body formation and mineralization in the upper crust of the Earth. Copyright © 2003 John Wiley & Sons, Ltd. [source] Zeolites in fissures of granites and gneisses of the Central AlpsJOURNAL OF METAMORPHIC GEOLOGY, Issue 8 2010T. WEISENBERGER Abstract Six different Ca-zeolite minerals are widespread in various assemblages in late fissures and fractures in granites and gneisses of the Swiss Alps. The zeolites formed as a result of water,rock interaction at relatively low temperatures (<250 °C) in the continental upper crust. The zeolites typically overgrow earlier minerals of the fissure assemblages, but zeolites also occur as monomineralic fissure fillings. They represent the youngest fissure minerals formed during uplift and exhumation of the Alpine orogen. A systematic study of zeolite samples showed that the majority of finds originate from three regions particularity rich in zeolite-bearing fissures: (i) in the central and eastern part of the Aar- and Gotthard Massifs; (2) Gibelsbach/Fiesch, in a fissure breccia located at the boundary of Aar Massif and Permian sedimentary rocks; and (3) in Penninic gneisses of the Simano nappe at Arvigo (Val Calanca). Rail and road tunnel construction across the Aar- and Gotthard Massif provided excellent data on zeolite frequency in Alpine fissures. It was found that 32% (Gotthard NEAT rail base tunnel, Amsteg section) and 18% (Gotthard road tunnel) of all studied fissures are filled with zeolites. The number of different zeolites is limited to six species: laumontite, stilbite and scolecite are abundant and common, whereas heulandite, chabazite and epistilbite occur occasionally. Calcium is the dominant extra-framework cation, with minor K and Na. Heulandite and chabazite contain Sr up to 29 and 10 mol.% extra-framework cations respectively. Na and K contents in zeolites tend to increase during growth as a result of changes in fluid composition and/or temperature. The K enrichment of stilbite found in surface outcrops compared to subsurface samples may indicate late stage cation exchange with surface water. Texture data, relative age sequences derived from fissure assemblages and equilibrium calculations show that the Ca-dominated zeolites precipitated from fluid with decreasing temperature in the order (old to young = hot to cold): scolecite, laumontite, heulandite, chabazite and stilbite. The necessary components for zeolite formation are derived from dissolving primary granite and gneiss minerals. The nature of these minerals depends, among other factors, on the metamorphic history of the host rock. Zeolites in the Aar Massif derived from the dissolution of epidote, secondary calcite and albite that were originally formed during Alpine greenschist metamorphism from primary granite and gneiss assemblages. Zeolite fissures occur in areas of H2O-dominated fluids. This is consistent with equilibrium calculations that predict a low CO2 tolerance of zeolite assemblages, particularly at low temperature. [source] P,T,t path of the Hercynian low-pressure rocks from the Mandatoriccio complex (Sila Massif, Calabria, Italy): new insights for crustal evolutionJOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2010A. LANGONE Abstract The tectono-metamorphic evolution of the Hercynian intermediate,upper crust outcropping in eastern Sila (Calabria, Italy) has been reconstructed, integrating microstructural analysis, P,T pseudosections, mineral isopleths and geochronological data. The studied rocks belong to a nearly complete crustal section that comprises granulite facies metamorphic rocks at the base and granitoids in the intermediate levels. Clockwise P,T paths have been constrained for metapelites of the basal level of the intermediate,upper crust (Umbriatico area). These rocks show noticeable porphyroblastic textures documenting the progressive change from medium- P metamorphic assemblages (garnet- and staurolite-bearing assemblages) towards low- P/high -T metamorphic assemblages (fibrolite- and cordierite-bearing assemblages). Peak-metamorphic conditions of ,590 °C and 0.35 GPa are estimated by integrating microstructural observations with P,T pseudosections calculated for bulk-rock and reaction-domain compositions. The top level of the intermediate,upper crust (Campana area) recorded only the major heating phase at low- P (,550 °C and 0.25 GPa), as documented by the static growth of biotite spots and of cordierite and andalusite porphyroblasts in metapelites. In situ U,Th,Pb dating of monazite from schists containing low -P/high -T metamorphic assemblages gave a weighted mean U,Pb concordia age of 299 ± 3 Ma, which has been interpreted as the timing of peak metamorphism. In the framework of the whole Hercynian crustal section the peak of low -P/high -T metamorphism in the intermediate-to-upper crust took place concurrently with granulite facies metamorphism in the lower crust and with emplacement of the granitoids in the intermediate levels. In addition, decompression is a distinctive trait of the P,T evolution both in the lower and upper crust. It is proposed that post,collisional extension, together with exhumation, is the most suitable tectonic setting in which magmatic and metamorphic processes can be active simultaneously in different levels of the continental crust. [source] Constraints on the early metamorphic evolution of Broken Hill, Australia, from in situ U-Pb dating and REE geochemistry of monaziteJOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2009C. R. M. McFARLANE Abstract The Broken Hill Pb-Zn deposit, New South Wales Australia, is hosted in granulite facies gneisses of the Southern Curnamona Province (SCP) that have long been known to record a polydeformational and polymetamorphic history. The details of this potentially prolonged tectonothermal history have remained poorly understood because of a historical emphasis on conventional (i.e. grain mount) U-Pb zircon geochronology to reveal details of the sedimentary, magmatic and metamorphic history of the rock that crops out in the vicinity of the city of Broken Hill. An alternative approach to unravelling the metamorphic history of the granulite facies gneisses in and around Broken Hill is to date accessory minerals, such as monazite, that participate in sub-solidus metamorphic reactions. We have taken advantage of the high spatial resolution and high sensitivity afforded by SHRIMP monazite geochronology to reconstruct the early history of the metamorphic rocks at Broken Hill. In contrast to previous studies, in situ analysis of monazite grains preserved in their original textural context in polished thin sections is used. Guided by electron microprobe X-ray maps, SHRIMP U-Pb dates for three distinct monazite compositional domains record pulses of monazite growth at c. 1657 Ma, c.1630 Ma and c.1602 Ma. It is demonstrated that these ages correspond to monazite growth during lower amphibolite facies, upper amphibolite facies and granulite facies metamorphism, respectively. It is speculated that this progressive heating of the SCP crust may have been driven by inversion of the upper crust during the Olarian Orogeny that was pre-heated by magmatic underplating at c.1657 Ma. [source] Interaction of metamorphism, deformation and exhumation in large convergent orogensJOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2002R. A. Jamieson Abstract Coupled thermal-mechanical models are used to investigate interactions between metamorphism, deformation and exhumation in large convergent orogens, and the implications of coupling and feedback between these processes for observed structural and metamorphic styles. The models involve subduction of suborogenic mantle lithosphere, large amounts of convergence (, 450 km) at 1 cm yr,1, and a slope-dependent erosion rate. The model crust is layered with respect to thermal and rheological properties , the upper crust (0,20 km) follows a wet quartzite flow law, with heat production of 2.0 ,W m,3, and the lower crust (20,35 km) follows a modified dry diabase flow law, with heat production of 0.75 ,W m,3. After 45 Myr, the model orogens develop crustal thicknesses of the order of 60 km, with lower crustal temperatures in excess of 700 °C. In some models, an additional increment of weakening is introduced so that the effective viscosity decreases to 1019 Pa.s at 700 °C in the upper crust and 900 °C in the lower crust. In these models, a narrow zone of outward channel flow develops at the base of the weak upper crustal layer where T,600 °C. The channel flow zone is characterised by a reversal in velocity direction on the pro-side of the system, and is driven by a depth-dependent pressure gradient that is facilitated by the development of a temperature-dependent low viscosity horizon in the mid-crust. Different exhumation styles produce contrasting effects on models with channel flow zones. Post-convergent crustal extension leads to thinning in the orogenic core and a corresponding zone of shortening and thrust-related exhumation on the flanks. Velocities in the pro-side channel flow zone are enhanced but the channel itself is not exhumed. In contrast, exhumation resulting from erosion that is focused on the pro-side flank of the plateau leads to ,ductile extrusion' of the channel flow zone. The exhumed channel displays apparent normal-sense offset at its upper boundary, reverse-sense offset at its lower boundary, and an ,inverted' metamorphic sequence across the zone. The different styles of exhumation produce contrasting peak grade profiles across the model surfaces. However, P,T,t paths in both cases are loops where Pmax precedes Tmax, typical of regional metamorphism; individual paths are not diagnostic of either the thickening or the exhumation mechanism. Possible natural examples of the channel flow zones produced in these models include the Main Central Thrust zone of the Himalayas and the Muskoka domain of the western Grenville orogen. [source] Cretaceous high- P granulites at Milford Sound, New Zealand: metamorphic history and emplacement in a convergent margin settingJOURNAL OF METAMORPHIC GEOLOGY, Issue 4 2000G. L. Clarke Granulite facies orthogneiss of the Arthur River Complex (ARC) at Milford Sound, western Fiordland records a complex Early Cretaceous magmatic and orogenic history for the Pacific Gondwana margin that culminated in the emplacement and burial of a dioritic batholith, the Western Fiordland Orthogneiss (WFO). Enstatite-bearing mafic to intermediate protoliths of the ARC and WFO intruded the middle to upper crust. The early deformation history of the ARC is preserved in the Pembroke Granulite, where two-pyroxene S1 assemblages that reflect P<8 kbar and T >750 °C were only patchily recrystallized during later deformation. S1 is cut by garnet-bearing, leucogabbroic to dioritic veins, which are cut by distinctive D2 fractures involving anorthositic veins and garnet,diopside,plagioclase-bearing reaction zones. These zones are widespread in the ARC and WFO and record conditions of P,14 kbar and T >750 °C. Garnet,clinopyroxene-bearing corona reaction textures that mantle enstatite in both the ARC and WFO reflect Early Cretaceous burial by approximately 25 km of continental crust. Most of the ARC is formed from the Milford and Harrison Gneisses, which contain steeply dipping S4 assemblages that envelop the Pembroke Granulite and involve garnet, hornblende, diopside, clinozoisite, rutile and plagioclase, with or without kyanite. The P,T history of rocks in western Fiordland reflects pronounced Early Cretaceous convergence-related tectonism and burial, possibly related to the collision and accretion of island arc material onto the Pacific Gondwana margin. [source] Evolution of Caledonian deformation fabrics under eclogite and amphibolite facies at Vårdalsneset, Western Gneiss Region, NorwayJOURNAL OF METAMORPHIC GEOLOGY, Issue 3 2000Engvik The Vårdalsneset eclogite situated in the Western Gneiss Region, SW Norway, is a well preserved tectonite giving information about the deformation regimes active in the lower crust during crustal thickening and subsequent exhumation. The eclogite constitutes layers and lenses variably retrograded to amphibolite and is composed of garnet and omphacite with varying amounts of barroisite, actinolite, clinozoisite, kyanite, quartz, paragonite, phengite and rutile. The rocks record a five-stage evolution connected to Caledonian burial and subsequent exhumation. (1) A prograde evolution through amphibolite facies (T =490±63 °C) is inferred from garnet cores with amphibole inclusions and bell-shaped Mn profile. (2) Formation of L>S-tectonite eclogite (T =680±20 °C, P=16±2 kbar) related to the subduction of continental crust during the Caledonian orogeny. Lack of asymmetrical fabrics and orientation of eclogite facies extensional veins indicate that the deformation regime during formation of the L>S fabric was coaxial. (3) Formation of sub-horizontal eclogite facies foliation in which the finite stretching direction had changed by approximately 90°. Disruption of eclogite lenses and layers between symmetric shear zones characterizes the dominantly coaxial deformation regime of stage 3. Locally occurring mylonitic eclogites (T =690±20 °C, P=15±1.5 kbar) with top-W kinematics may indicate, however, that non-coaxial deformation was also active at eclogite facies conditions. (4) Development of a widespread regional amphibolite facies foliation (T =564±44 °C, P<10.3,8.1 kbar), quartz veins and development of conjugate shear zones indicate that coaxial vertical shortening and sub-horizontal stretching were active during exhumation from eclogite to amphibolite facies conditions. (5) Amphibolite facies mylonites mainly formed under non-coaxial top-W movement are related to large-scale movement on the extensional detachments active during the late-orogenic extension of the Caledonides. The structural and metamorphic evolution of the Vårdalsneset eclogite and related areas support the exhumation model, including an extensional detachment in the upper crust and overall coaxial deformation in the lower crust. [source] Genesis and Mixing/Mingling of Mafic and Felsic Magmas of Back-Arc Granite: Miocene Tsushima Pluton, Southwest JapanRESOURCE GEOLOGY, Issue 1 2009Ki-Cheol Shin Abstract The Middle Miocene Tsushima granite pluton is composed of leucocratic granites, gray granites and numerous mafic microgranular enclaves (MME). The granites have a metaluminous to slightly peraluminous composition and belong to the calc-alkaline series, as do many other coeval granites of southwestern Japan, all of which formed in relation to the opening of the Sea of Japan. The Tsushima granites are unique in that they occur in the back-arc area of the innermost Inner Zone of Southwest Japan, contain numerous miarolitic cavities, and show shallow crystallization (2,6 km deep), based on hornblende geobarometry. The leucocratic granite has higher initial 87Sr/86Sr ratios (0.7065,0.7085) and lower ,Nd(t) (,7.70 to ,4.35) than the MME of basaltic,dacitic composition (0.7044,0.7061 and ,0.53 to ,5.24), whereas most gray granites have intermediate chemical and Sr,Nd isotopic compositions (0.7061,0.7072 and ,3.75 to ,6.17). Field, petrological, and geochemical data demonstrate that the Tsushima granites formed by the mingling and mixing of mafic and felsic magmas. The Sr,Nd,Pb isotope data strongly suggest that the mafic magma was derived from two mantle components with depleted mantle material and enriched mantle I (EMI) compositions, whereas the felsic magma formed by mixing of upper mantle magma of EMI composition with metabasic rocks in the overlying lower crust. Element data points deviating from the simple mixing line of the two magmas may indicate fractional crystallization of the felsic magma or chemical modification by hydrothermal fluid. The miarolitic cavities and enrichment of alkali elements in the MME suggest rapid cooling of the mingled magma accompanied by elemental transport by hydrothermal fluid. The inferred genesis of this magma,fluid system is as follows: (i) the mafic and felsic magmas were generated in the mantle and lower crust, respectively, by a large heat supply and pressure decrease under back-arc conditions induced by mantle upwelling and crustal thinning; (ii) they mingled and crystallized rapidly at shallow depths in the upper crust without interaction during the ascent of the magmas from the middle to the upper crust, which (iii) led to fluid generation in the shallow crust. The upper mantle in southwest Japan thus has an EMI-like composition, which plays an important role in the genesis of igneous rocks there. [source] The structural evolution of the Halten Terrace, offshore Mid-Norway: extensional fault growth and strain localisation in a multi-layer brittle,ductile systemBASIN RESEARCH, Issue 2 2010N. Marsh ABSTRACT Tectonic subsidence in rift basins is often characterised by an initial period of slow subsidence (,rift initiation') followed by a period of more rapid subsidence (,rift climax'). Previous work shows that the transition from rift initiation to rift climax can be explained by interactions between the stress fields of growing faults. Despite the prevalence of evaporites throughout the geological record, and the likelihood that the presence of a regionally extensive evaporite layer will introduce an important, sub-horizontal rheological heterogeneity into the upper crust, there have been few studies that document the impact of salt on the localisation of extensional strain in rift basins. Here, we use well-calibrated three-dimensional seismic reflection data to constrain the distribution and timing of fault activity during Early Jurassic,Earliest Cretaceous rifting in the Åsgard area, Halten Terrace, offshore Mid-Norway. Permo-Triassic basement rocks are overlain by a thick sequence of interbedded halite, anhydrite and mudstone. Our results show that rift initiation during the Early Jurassic was characterised by distributed deformation along blind faults within the basement, and by localised deformation along the major Smørbukk and Trestakk faults within the cover. Rift climax and the end of rifting showed continued deformation along the Smørbukk and Trestakk faults, together with initiation of new extensional faults oblique to the main basement trends. We propose that these new faults developed in response to salt movement and/or gravity sliding on the evaporite layer above the tilted basement fault blocks. Rapid strain localisation within the post-salt cover sequence at the onset of rifting is consistent with previous experimental studies that show strain localisation is favoured by the presence of a weak viscous substrate beneath a brittle overburden. [source] Basin- and Mountain-Building Dynamic Model of "Ramping-Detachment-Compression" in the West Kunlun-Southern Tarim Basin MarginACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2008CUI Junwen Abstract: Analysis of the deformation structures in the West Kunlun-Tarim basin-range junction belt indicates that sediments in the southwestern Tarim depression were mainly derived from the West Kunlun Mountains and that with time the region of sedimentation extended progressively toward the north. Three north-underthrusting (subducting), steep-dipping, high-velocity zones (bodies) are recognized at depths, which correspond to the central West Kunlun junction belt (bounded by the Küda-Kaxtax fault on the north and Bulungkol-Kangxiwar fault on the south), Quanshuigou fault belt (whose eastward extension is the Jinshajiang fault belt) and Bangong Co-Nujiang fault belt. The geodynamic process of the basin-range junction belt generally proceeded as follows: centering around the magma source region (which largely corresponds with the Karatag terrane at the surface), the deep-seated material flowed and extended from below upward and to all sides, resulting in strong deformation (mainly extension) in the overlying lithosphere and even the upper mantle, appearance of extensional stress perpendicular to the strike of the orogenic belt in the thermal uplift region or at the top of the mantle diapir and localized thickening of the sedimentary cover (thermal subsidence in the upper crust). Three stages of the basin- and mountain-forming processes in the West Kunlun-southern Tarim basin margin may be summarized: (1) the stage of Late Jurassic-Early Cretaceous ramping-rapid uplift and rapid subsidence, when north-directed thrust propagation and south-directed intracontinental subduction, was the dominant mechanism for basin- and mountain-building processes; (2) the stage of Late Cretaceous-Paleogene deep-level detachment-slow uplift and homogeneous subsidence, when the dominant mechanism for the basin- and mountain-forming processes was detachment (subhorizontal north-directed deep-level ductile shear) and its resulting lateral propagation of deep material; and (3) the stage of Neogene-present compression-rapid uplift and strong subsidence, when the basin- and mountain-forming processes were simultaneously controlled by north-vergent thrust propagation and compression. The authors summarize the processes as the "ramping-detachment-compression basin- and mountain-forming dynamic model". The basin-range tectonics was initiated in the Late Jurassic, the Miocene-Pliocene were a major transition period for the basin- and mountain-forming mechanism and the terminal early Pleistocene tectonic movement in the main laid a foundation for the basin-and-mountain tectonic framework in the West Kunlun-southern Tarim basin margin. [source] 40Ar/39Ar Dating of Deformation Events and Reconstruction of Exhumation of Ultrahigh-Pressure Metamorphic Rocks in Donghai, East ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2003LI Jinyi Abstract Recent investigations reveal that the ultrahigh-pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile-brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile-brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite-plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite-facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1 ± 0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age of the later event. The dating of pegmatitic biotites and K-feldspars near the decollement plane from the eastern Fangshan area yield plateau ages of 203.4±0.3 Ma, 203.6±0.4 Ma and 204.8±2.2 Ma, and isochron ages of 204.0±2.0 Ma, 200.6±3.1 Ma and 204.0±5.0 Ma, respectively, implying that the rocks in the studied area had not been cooled down to closing temperature of the dated biotites and K-feldspars until the beginning of the Jurassic (about 204 Ma). The integration of these data with previous chronological ages on the ultrahigh-pressure metamorphism lead to a new inference on the exhumation of the UHPM rocks. The UHPM rocks in the area were exhumed at the rate of 3,4 km/Ma from the mantle (about 80,100 km below the earth's surface at about 240 Ma) to the lower crust (at the depth of about 20-30km at 220 Ma), and at the rate of 1,2 km/Ma to the middle crust (at the depth of about 15 km at 213 Ma), and then at the rate of less than 1 km/Ma to the upper crust about 10 km deep at about 204 Ma. [source] |