Upper Bank (upper + bank)

Distribution by Scientific Domains


Selected Abstracts


Reciprocal connections between olfactory structures and the cortex of the rostral superior temporal sulcus in the Macaca fascicularis monkey

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2005
A. Mohedano-Moriano
Abstract Convergence of sensory modalities in the nonhuman primate cerebral cortex is still poorly understood. We present an anatomical tracing study in which polysensory association cortex located at the fundus and upper bank of the rostral superior temporal sulcus presents reciprocal connections with primary olfactory structures. At the same time, projections from this polysensory area reach multiple primary olfactory centres. Retrograde (Fast Blue) and anterograde (biotinylated dextran,amine and 3H-amino acids) tracers were injected into primary olfactory structures and rostral superior temporal sulcus. Retrograde tracers restricted to the anterior olfactory nucleus resulted in labelled neurons in the rostral portion of the upper bank and fundus of superior temporal sulcus. Injections of biotinylated dextran,amine at the fundus and upper bank of the superior temporal sulcus confirmed this projection by labelling axons in the dorsal and lateral portions of the anterior olfactory nucleus, as well as piriform, periamygdaloid and entorhinal cortices. Retrograde tracer injections at the rostral superior temporal sulcus resulted in neuronal labelling in the anterior olfactory nucleus, piriform, periamygdaloid and entorhinal cortices, thus providing confirmation of the reciprocity between primary olfactory structures and the cortex at the rostral superior temporal sulcus. The reciprocal connections between the rostral part of superior temporal sulcus and primary olfactory structures represent a convergence for olfactory and other sensory modalities at the cortex of the rostral temporal lobe. [source]


Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2002
M. Petrides
A comparison of the cytoarchitecture of the human and the macaque monkey ventrolateral prefrontal cortex demonstrated a region in the monkey that exhibits the architectonic characteristic of area 45 in the human brain. This region occupies the dorsal part of the ventrolateral prefrontal convexity just below area 9/46v. Rostroventral to area 45 in the human brain lies a large cortical region labelled as area 47 by Brodmann. The ventrolateral component of this region extending as far as the lateral orbital sulcus has architectonic characteristics similar to those of the ventrolateral prefrontal region labelled by Walker as area 12 in the macaque monkey. We designated this region in both the human and the monkey ventrolateral prefrontal cortex as area 47/12. Thus, area 47/12 designates the specific part of the zone previously labelled as area 47 in the human brain that has the same overall architectonic pattern as that of Walker's area 12 in the macaque monkey brain. The cortical connections of these two areas were examined in the monkey by injecting fluorescent retrograde tracers. Although both area 45 and area 47/12 as defined here had complex multimodal input, they could be differentiated in terms of some of their inputs. Retrograde tracers restricted to area 47/12 resulted in heavy labelling of neurons in the rostral inferotemporal visual association cortex and in temporal limbic areas (i.e. perirhinal and parahippocampal cortex). In contrast, injections of tracers into dorsally adjacent area 45 demonstrated strong labelling in the superior temporal gyrus (i.e. the auditory association cortex) and the multimodal cortex in the upper bank of the superior temporal sulcus. [source]


Topographical and laminar distribution of cortical input to the monkey entorhinal cortex

JOURNAL OF ANATOMY, Issue 2 2007
A. Mohedano-Moriano
Abstract Hippocampal formation plays a prominent role in episodic memory formation and consolidation. It is likely that episodic memory representations are constructed from cortical information that is mostly funnelled through the entorhinal cortex to the hippocampus. The entorhinal cortex returns processed information to the neocortex. Retrograde tracing studies have shown that neocortical afferents to the entorhinal cortex originate almost exclusively in polymodal association cortical areas. However, the use of retrograde studies does not address the question of the laminar and topographical distribution of cortical projections within the entorhinal cortex. We examined material from 60 Macaca fascicularis monkeys in which cortical deposits of either 3H-amino acids or biotinylated dextran-amine as anterograde tracers were made into different cortical areas (the frontal, cingulate, temporal and parietal cortices). The various cortical inputs to the entorhinal cortex present a heterogeneous topographical distribution. Some projections terminate throughout the entorhinal cortex (afferents from medial area 13 and posterior parahippocampal cortex), while others have more limited termination, with emphasis either rostrally (lateral orbitofrontal cortex, agranular insular cortex, anterior cingulate cortex, perirhinal cortex, unimodal visual association cortex), intermediate (upper bank of the superior temporal sulcus, unimodal auditory association cortex) or caudally (parietal and retrosplenial cortices). Many of these inputs overlap, particularly within the rostrolateral portion of the entorhinal cortex. Some projections were directed mainly to superficial layers (I,III) while others were heavier to deep layers (V,VI) although areas of dense projections typically spanned all layers. A primary report will provide a detailed analysis of the regional and laminar organization of these projections. Here we provide a general overview of these projections in relation to the known neuroanatomy of the entorhinal cortex. [source]


Differences in the structure, growth and survival of Parasenecio yatabei ramets with contrasting water relations on the slope of a stream bank

PLANT SPECIES BIOLOGY, Issue 2 2009
HAJIME TOMIMATSU
Abstract Parasenecio yatabei (Asteraceae), a summer-green perennial herb, is widely distributed on sloping mountain stream banks in cool-temperate zone forests of Japan. We investigated the growth pattern, leaf longevity and leaf water relations of vegetatively independent plants (ramets) growing in two contrasting soil water conditions, that is, upper and lower stream banks (U ramets and L ramets, respectively). The objective of the present study was to clarify the physiological and morphological responses of the ramets to soil water conditions. Dry matter allocation to subterranean parts was higher in U ramets than in L ramets. The U ramet leaves survived for approximately 2 months longer than L ramet leaves. The ratio of subterranean part to aerial part dry matter was greater in U ramets than L ramets. Leaf mass per leaf area (LMA) tended to be greater in U ramets than L ramets throughout the growing season. The leaf bulk modulus of elasticity at full hydration was significantly higher in U ramets. Thus, ramet growth patterns and morphological traits varied with changing soil water conditions. The greater longevity of U ramet leaves may play a role in compensating for the reduced annual net carbon gain caused by lower photosynthetic activity. U ramets growing in environments with less water availability achieved high water-use efficiency by a high passive water absorption capacity via a progressed root system and high productivity via longer leaf longevity with higher LMA and elasticity. Therefore, P. yatabei growing along mountain streams could have the ability to colonize the upper bank through higher survivorship based on these traits. [source]