U-Pb Dating (u-pb + dating)

Distribution by Scientific Domains

Selected Abstracts

Constraints on the early metamorphic evolution of Broken Hill, Australia, from in situ U-Pb dating and REE geochemistry of monazite

Abstract The Broken Hill Pb-Zn deposit, New South Wales Australia, is hosted in granulite facies gneisses of the Southern Curnamona Province (SCP) that have long been known to record a polydeformational and polymetamorphic history. The details of this potentially prolonged tectonothermal history have remained poorly understood because of a historical emphasis on conventional (i.e. grain mount) U-Pb zircon geochronology to reveal details of the sedimentary, magmatic and metamorphic history of the rock that crops out in the vicinity of the city of Broken Hill. An alternative approach to unravelling the metamorphic history of the granulite facies gneisses in and around Broken Hill is to date accessory minerals, such as monazite, that participate in sub-solidus metamorphic reactions. We have taken advantage of the high spatial resolution and high sensitivity afforded by SHRIMP monazite geochronology to reconstruct the early history of the metamorphic rocks at Broken Hill. In contrast to previous studies, in situ analysis of monazite grains preserved in their original textural context in polished thin sections is used. Guided by electron microprobe X-ray maps, SHRIMP U-Pb dates for three distinct monazite compositional domains record pulses of monazite growth at c. 1657 Ma, c.1630 Ma and c.1602 Ma. It is demonstrated that these ages correspond to monazite growth during lower amphibolite facies, upper amphibolite facies and granulite facies metamorphism, respectively. It is speculated that this progressive heating of the SCP crust may have been driven by inversion of the upper crust during the Olarian Orogeny that was pre-heated by magmatic underplating at c.1657 Ma. [source]

Fluid flow during exhumation of deeply subducted continental crust: zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite

Abstract Quartz veins in high-pressure to ultrahigh-pressure metamorphic rocks witness channelized fluid flow that transports both mass and heat during collisional orogenesis. This flow can occur in the direction of changing temperature/pressure during subduction or exhumation. SHRIMP U-Pb dating of zircon from a kyanite-quartz vein within ultrahigh-pressure eclogite in the Dabie continental collision orogen yields two age groups at 212 ± 7 and 181 ± 13 Ma, which are similar to two groups of LA-ICPMS age at 210 ± 4 and 180 ± 5 Ma for the same sample. These ages are significantly younger than zircon U-Pb ages of 224 ± 2 Ma from the host eclogite. Thus the two age groups from the vein date two episodes of fluid flow involving zircon growth: the first due to decompression dehydration during exhumation, and the second due to heating dehydration in response to a cryptic thermal event after continental collision. Laser fluorination O-isotope analyses gave similar ,18O values for minerals from both vein and eclogite, indicating that the vein-forming fluid was internally derived. Synchronous cooling between the vein and eclogite is suggested by almost the same quartz,mineral fractionation values, with regularly decreasing temperatures that are in concordance with rates of O diffusion in the minerals. While the quartz veining was caused by decompression dehydration at 700,650 °C in a transition from ultrahigh-pressure to high-pressure eclogite-facies retrogression, the postcollisional fluid flow was retriggered by heating dehydration at ,500 °C without corresponding metamorphism. In either case, the kyanite,quartz vein formed later than the peak ultrahigh-pressure metamorphic event at the Middle Triassic, pointing to focused fluid flow during exhumation rather than subduction. The growth of metamorphic zircon in the eclogite appears to have depended on fluid availability, so that their occurrence is a type of geohygrometer besides geochronological applicability to dating of metamorphic events in orogenic cycles. [source]

40Ar/39Ar Dating of Xuebaoding Granite in the Songpan-Garzę Orogenic Belt, Southwest China, and its Geological Significance

Abstract: Thus far, our understanding of the emplacement of Xuebaoding granite and the occurrence and evolution of the Songpan-Garzę Orogenic Belt has been complicated by differing age spectra results. Therefore, in this study, the 40Ar/39Ar and sensitive high resolution ion micro-probe (SHRIMP) U-Pb dating methods were both used and the results compared, particularly with respect to dating data for Pankou and Pukouling granites from Xuebaoding, to establish ages that are close to the real emplacements. The results of SHRIMP U-Pb dating for zircon showed a high amount of U, but a very low value for Th/U. The high U amount, coupled with characteristics of inclusions in zircons, indicates that Xuebaoding granites are not suitable for U-Pb dating. Therefore, muscovite in the same granite samples was selected for 40Ar/39Ar dating. The 40Ar/39Ar age spectrum obtained on bulk muscovite from Pukouling granite in the Xuebaoding, gave a plateau age of 200.1±1.2 Ma and an inverse isochron age of 200.6±1.2 Ma. The 40Ar/39Ar age spectrum obtained on bulk muscovite from Pankou granite in the Xuebaoding gave another plateau age of 193.4± 1.1 Ma and an inverse isochron age of 193.7±1.1 Ma. The 40Ar/39Ar intercept of 277.0±23.4 (2,) was very close to the air ratio, indicating that no apparent excess argon contamination was present These age dating spectra indicate that both granites were emplaced at 200.6±1.3 Ma and 193.7±1.1 Ma, respectively. Through comparison of both dating methods and their results, we can conclude that it is feasible that the muscovite in the granite bearing high U could be used for 40Ar/39Ar dating without extra Ar. Based on this evidence, as well as the geological characteristics of the Xuebaoding W-Sn-Be deposit and petrology of granites, it can be concluded that the material origin of the Xuebaoding W-Sn-Be deposit might partially originate from the Xuebaoding granite group emplacement at about 200 Ma. Moreover, compared with other granites and deposits distributed in various positions in the Songpan-Garzę Orogenic Belt, the Xuebaoding emplacement ages further show that the main rare metal deposits and granites in peripheral regions occurred earlier than those in the inner Songpan-Garzę. Therefore, 40Ar/39Ar dating of Xuebaoding granite will lay a solid foundation for studying the occurrence and evolution of granite and rare earth element deposits in the Songpan-Garzę Orogenic Belt. [source]

Ultrahigh-pressure and Retrograde Metamorphic Ages for Paleozoic Protolith of Paragneiss in the Main Drill Hole of the Chinese Continental Scientific Drilling Project (CCSD-MH), SW Sulu UHP Terrane

LIU Fulai
Abstract, Laser Raman spectroscopy and cathodoluminescence (CL) images show that most zircon crystals separated from paragneiss in the main drill hole of the Chinese Continental Scientific Drilling Project (CCSD-MH) at Maobei, southwestern Sulu terrane, contain low-pressure mineral-bearing detrital cores, coesite-bearing mantles and quartz-bearing or mineral inclusion-free rims. SHRIMP U-Pb dating on these zoned zircons yield three discrete and meaningful age groups. The detrital cores yield a large age span from 659 to 313 Ma, indicating the protolith age for the analyzed paragneiss is Paleozoic rather than Proterozoic. The coesite-bearing mantles yield a weighted mean age of 228 ± 5 Ma for the UHP event. The quartz-bearing outmost rims yield a weighted mean age of 213 ± 6 Ma for the retrogressive event related to the regional amphibolite facies metamorphism in the Sulu UHP terrane. Combined with previous SHRIMP U-Pb dating results from orthogneiss in CCSD-MH, it is suggested that both Neoproterozoic granitic protolith and Paleozoic sedimentary rocks were subducted to mantle depths in the Late Triassic. About 15 million years later, the Sulu UHP metamorphic rocks were exhumed to mid-crustal levels and overprinted by an amphibolite-facies retrogressive metamorphism. The exhumation rate deduced from the SHRIMP data and metamorphic P-T conditions is about 6.7 km/Ma. Such a fast exhumation suggests that the Sulu UHP paragneiss and orthogneiss returned towards the surface as a dominant part of a buoyant sliver, caused as a consequence of slab breakoff. [source]

Magmatic Gold Mineralization in the Western Qinling Orogenic Belt: Geology and Metallogenesis of the Baguamiao, Liba and Xiaogouli Gold Deposits

FENG Jianzhong
Abstract, The superlarge Baguamiao, large Liba and Xiaogouli gold deposits represent three typical gold deposits different from the Carlin type in the western Qinling Orogenic Belt. Based on Ar-Ar dating of quartz from ores, U-Pb dating of single zircon from granite, tracing of H and O isotopes and studies on the mineralogy and texture of spots and bleached alteration developed in wall rocks, this paper focuses the relations between gold deposits and granite to clarify the origin of gold deposits and the metallogenesis in the tectonic evolution of the Qinling Orogenic Belt. The comprehensive studies show that the age of the granite (148.1,244 Ma) is identical with that of the gold deposits (131.91,232.56 Ma). It is suggested that the granite has close temporal, spatial and genetic relationship with the gold deposits. The granite provides a heat source, water source and considerable amount of ore-forming material. Finally, it is concluded that the orogeny by collision, emplacement of the granite and positioning of the gold deposits represent a successive process. Both the granite and gold deposits resulted from the syn-orogeny and post-orogeny tectonic evolution. [source]