Home About us Contact | |||
Unit-cell Dimensions (unit-cell + dimension)
Selected AbstractsSymmetry of platelet defects in diamond: new insights with synchrotron lightACTA CRYSTALLOGRAPHICA SECTION B, Issue 5 2010Alexei Bosak Mapping of reciprocal space for Ia -type diamond single crystals with synchrotron radiation has uncovered a variety of diffuse scattering features, some of them have not been observed before. The main component of diffuse scattering in the form of diffuse rods corresponds to a set of platelets which join together blocks of diamond structure. The platelets are ordered structural entities with lattice periodicity , where is a unit-cell dimension of diamond. Intensity distribution along the rods has been measured and used for recognition of symmetry elements of the platelet structure. These findings, together with previously reported transmission electron microscopy (TEM) observations, provide strong constraints for atomistic modelling of the platelet structure. [source] A Crystalline Phase Transition and Optical Properties in a CoIICuII Oxamato-Bridged Ferrimagnetic ChainEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 24 2005Cynthia L. M. Pereira Abstract The compound [CoCu(opba)(DMSO)3] (1) [opba = ortho -phenylenebis(oxamato)] has been synthesized and characterized. Its crystal structure has been analyzed by X-ray diffraction techniques at 100 and 298 K. A structural phase-transition has been detected at around 150 K. An orthorhombic crystalline system is found at both temperatures, with very similar unit-cell dimensions. At room temperature 1 crystallizes in the Pnam space group (, -1 phase), with a = 7.6712(2), b = 14.8003(3), c = 21.0028(5) Å, and Z = 4, whereas at low temperature it crystallizes in the Pna21 space group (, -1 phase), with a = 7.3530(2), b = 14.5928(4), c = 21.0510(7) Å, and Z = 4. Both crystalline phases consist of linearly ordered bimetallic chains with the [Cu(opba)]2, units tied by CoII ions to form a one-dimensional system. The DMSO molecules in , -1, which are coordinated to either CuII or CoII, are disordered. At low temperature, a small reorganization of the CuII and CoII environments is observed. The origin of this phase transition, which is completely reversible, is the modification of the crystalline packing with the temperature. Linear birefringence measurements were done on single crystals in the 100,300 K temperature range. Around 150 K, the linear birefringence curve shows an inflexion that is interpreted as being related to the conversion of ,-1 into , -1. Both dc and ac magnetic measurements were performed on the polycrystalline sample. The results reveal a one-dimensional ferrimagnetic behavior. Single crystal optical characterization at room temperature shows that 1 presents a very strong dichroism superposed on the linear birefringence. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source] The crystal structure of perdeuterated methanol hemiammoniate (CD3OD·0.5ND3) determined from neutron powder diffraction data at 4.2 and 180,KJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2 2010A. D. Fortes The crystal structure of perdeuterated methanol hemiammoniate, CD3OD·0.5ND3, has been solved from neutron powder diffraction data collected at 4.2 and 180,K. The structure is orthorhombic, space group Pn21a (Z = 4), with unit-cell dimensions a = 12.70615,(16), b = 8.84589,(9), c = 4.73876,(4),Å, V = 532.623,(8),Å3 [,calc = 1149.57,(2),kg,m,3] at 4.2,K, and a = 12.90413,(16), b = 8.96975,(8), c = 4.79198,(4),Å, V = 554.656,(7),Å3 [,calc = 1103.90,(1),kg,m,3] at 180,K. The crystal structure was determined by ab initio methods from the powder data; atomic coordinates and isotropic displacement parameters were subsequently refined by the Rietveld method to Rp, 2% at both temperatures. The crystal structure comprises a three-dimensionally hydrogen-bonded network in which the ND3 molecules are tetrahedrally coordinated by the hydroxy moieties of the methanol molecule. This connectivity leads to the formation of zigzag chains of ammonia,hydroxy groups extending along the c axis, formed via N,D···O hydrogen bonds; these chains are cross-linked along the a axis through the hydroxy moiety of the second methanol molecule via N,D···O and O,D···O hydrogen bonds. This `bridging' hydroxy group in turn donates an O,D···N hydrogen bond to ammonia in adjacent chains stacked along the b axis. The methyl deuterons in methanol hemiammoniate, unlike those in methanol monoammoniate, do not participate in hydrogen bonding and reveal evidence of orientational disorder at 180,K. The relative volume change on warming from 4.2 to 180,K, ,V/V, is + 4.14%, which is comparable to, but more nearly isotropic (as determined from the relative change in axial lengths, e.g.,a/a) than, that observed in deuterated methanol monohydrate, and very similar to what is observed in methanol monoammoniate. [source] Determination of lattice-transform density profiles for multilayered three-dimensional microcrystals in electron crystallographyJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 4 2000Eva Dimmeler Electron crystallography on multilayered three-dimensional microcrystals has been limited in application by the need to define precisely the three-dimensional shape of the diffraction density profiles. A new method is presented here to obtain this profile from experimental spot positions which are shifted in a characteristic way from the expected Bragg positions. While the Bragg positions are defined by the diffraction geometry, the characteristic shift additionally depends on the density profile in Fourier space. In general, these two effects are intermingled. A new correlation approach is presented which uses characteristic shift patterns to separate these effects. This technique also allows the determination of all three crystallographic unit-cell dimensions from a single tilted electron diffraction pattern. It was tested on simulated diffraction patterns and applied to experimental data of frozen hydrated crystals of the protein catalase. Since multilayered catalase crystals with different numbers of crystallographic layers were studied, an inhomogeneous data set had to be evaluated. Processing of such data is now possible using the new correlation approach. [source] Thermal Expansion of ,-Yttrium DisilicateJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 1 2004Koichiro Fukuda Crystals of ,-Y2Si2O7 (space group P121/c1) were examined using high-temperature powder X-ray diffractometry to determine their unit-cell dimensions from 296 to 1473 K. The lattice deformation induced by thermal expansion was investigated using matrix algebra analysis to determine the directions and magnitudes of the principal distortions (,i, i= 1,2, and 3). The directions of ,1 and ,3 were defined by the acute angle ,1c, which linearly decreased from 5(2)° to ,5.5(3)° with increased temperature from 504 to 1473 K. The ,2 -axis invariably coincided with the crystallographic b -axis. The magnitudes of ,1 and ,2 steadily increased to, respectively, 1.0061(1) and 1.0068(1) during heating to 1473 K, while ,3 remained almost constant for the entire temperature range. The mean principal distortion, ,m (= (,1+,2+,3)/3), steadily increased to 1.0044(1) with increased temperature to 1473 K. The coefficient of mean linear thermal expansion (,) was derived from the mean principal strain (,m - 1) as ,= (,m - 1)/,T. The temperature dependence was determined to be ,= 2.03 times 103+ 1.36(T - 296) (10 -9 K -1). Provided that the rule-of-mixtures holds for the Y2Si2O7/Y2SiO5 composites as protective coating on SiC substrates, the volume fractions of 0.72-0.77 (70,75 mass%) would be necessary for the Y2Si2O7 component to match the ,-values of both materials. [source] Towards a generalized vision of oxides: disclosing the role of cations and anions in determining unit-cell dimensionsACTA CRYSTALLOGRAPHICA SECTION B, Issue 3 2010Ángel Vegas Theoretical calculations of the electron-localization function show that, at the volumes of the two CaO phases (rocksalt and CsCl type), the parent Ca structures (fcc: face-centred cubic and sc: simple cubic, respectively) exhibit charge concentration zones which coincide with the positions occupied by the O atoms in their oxides. Similar features, also observed for the pairs Ca/CaF2 and BaSn/BaSnO3, are supported by recent high-pressure experiments as well as electron-localization function (ELF) calculations, carried out on elemental K. At very high pressures, the elemental K adopts the hP4 structure, topologically identical to that of the K atoms in high-pressure K2S and high-temperature ,-K2SO4. Moreover, the ELF for the hP4 structure shows charge concentration (,,2 electrons) at the sites occupied by the S atoms in the high-pressure K2S phase. All these features confirm the oxidation/high-pressure equivalence as well as the prediction of how cation arrays should be metastable phases of the parent metals. For the first time to our knowledge, the structure type, dimension and topology of several oxides and fluorides (CaO, CaF2 and BaSnO3) are explained in univocal physical terms. [source] Octahedral tilt twinning and compositional modulation in NaLaMgWO6ACTA CRYSTALLOGRAPHICA SECTION B, Issue 6 2009Graham King A combination of selected-area electron diffraction (SAED), neutron powder diffraction (NPD) and high-resolution transmission electron microscopy (HRTEM) reveals a complex superstructure in the ordered perovskite NaLaMgWO6. Through indexing of SAED patterns the unit-cell dimensions are found to be 46.8 × 7.8 × 7.9,Å, which corresponds to a 12ap× 2ap× 2ap superstructure of the simple perovskite unit cell. HRTEM images reveal the formation of an unmistakable stripe contrast that repeats with the same periodicity. Doubling of the b and c axes is brought about by a combination of layered ordering of Na and La, rock-salt ordering of Mg and W, and octahedral tilting. The a axis repeat distance results from a one-dimensional twinning of the octahedral tilts in combination with a compositional modulation. Modeling of the NPD pattern shows that the underlying tilt system is a,a,c0 with tilt angles of ,,8° about the a and b axes. The octahedral tilt-twin boundaries run perpendicular to the a axis and are separated by 6ap. Simulated HRTEM images show that octahedral tilt twinning alone cannot explain the stripes seen in the HRTEM images, rather a compositional modulation involving the A -site cations is necessary to explain the experimental images. [source] Structure determination of A2M3+TaO6 and A2M3+NbO6 ordered perovskites: octahedral tilting and pseudosymmetryACTA CRYSTALLOGRAPHICA SECTION B, Issue 3 2006Paris W. Barnes The room-temperature crystal structures of six A2M3+M5+O6 ordered perovskites have been determined from neutron and X-ray powder diffraction data. Ba2YNbO6 adopts the aristotype high-symmetry cubic structure (space group Fmm, Z = 4). The symmetries of the remaining five compounds were lowered by octahedral tilting distortions. Out-of-phase rotations of the octahedra about the c axis were observed in Sr2CrTaO6 and Sr2GaTaO6, which lowers the symmetry to tetragonal (space group = I4/m, Z = 2, Glazer tilt system = a0a0c,). Octahedral tilting analogous to that seen in GdFeO3 occurs in Sr2ScNbO6, Ca2AlNbO6 and Ca2CrTaO6, which lowers the symmetry to monoclinic (space group P21/n, Z = 2, Glazer tilt system = a,a,c+). The Sr2MTaO6 (M = Cr, Ga, Sc) compounds have unit-cell dimensions that are highly pseudo-cubic. Ca2AlNbO6 and Ca2CrTaO6 have unit-cell dimensions that are strongly pseudo-orthorhombic. This high degree of pseudosymmetry complicates the space-group assignment and structure determination. The space-group symmetries, unit-cell dimensions and cation ordering characteristics of an additional 13 compositions, as determined from X-ray powder diffraction data, are also reported. An analysis of the crystal structures of 32 A2MTaO6 and A2MNbO6 perovskites shows that in general the octahedral tilt system strongly correlates with the tolerance factor. [source] 4-Hydroxy-2-vinyl-2,3,4,5-tetrahydro-1-benzazepine and its 7-fluoro and 7-chloro analogues are isomorphous but not strictly isostructuralACTA CRYSTALLOGRAPHICA SECTION C, Issue 3 2009Lina M. Acosta 4-Hydroxy-2-vinyl-2,3,4,5-tetrahydro-1-benzazepine, C12H15NO, (I), and its 7-fluoro and 7-chloro analogues, namely 7-fluoro-4-hydroxy-2-vinyl-2,3,4,5-tetrahydro-1-benzazepine, C12H14FNO, (II), and 7-chloro-4-hydroxy-2-vinyl-2,3,4,5-tetrahydro-1-benzazepine, C12H14ClNO, (III), are isomorphous, but with variations in the unit-cell dimensions which preclude in compound (III) one of the weaker intermolecular interactions found in compounds (I) and (II). Thus the compounds are not strictly isostructural in terms of the structurally significant intermolecular interactions, although the corresponding atomic coordinates are very similar. The azepine rings adopt chair conformations. The molecules are linked by a combination of N,H...O and O,H...N hydrogen bonds into chains of edge-fused R33(10) rings, which in compounds (I) and (II) are further linked into sheets by a single C,H...,(arene) hydrogen bond. The significance of this study lies in its observation of isomorphism in compounds (I),(III), and its observation of a sufficient variation in one of the cell dimensions effectively to alter the range of significant hydrogen bonds present in the crystal structures. [source] 6-Dimethoxymethyl-1-methoxycarbonylbicyclo[3.1.0]hex-2-ene-2-carboxylic acidACTA CRYSTALLOGRAPHICA SECTION C, Issue 7 2000Satomi Niwayama The title compound, C12H16O6, prepared by a standard synthetic method, was determined by single-crystal X-ray crystallography to exist with a cyclopropane ring fused to a cyclopentene ring. Comparison of the unit-cell dimensions and space group of this material with those of a crystal of the same material prepared using a route involving pig liver esterase hydrolysis shows them to be identical. [source] Polymorphism of microcrystalline urate oxidase from Aspergillus flavusACTA CRYSTALLOGRAPHICA SECTION D, Issue 5 2010Ines Collings Different polymorphs of rasburicase, a recombinant urate oxidase enzyme (Uox) from Aspergillus flavus, were obtained as a series of polycrystalline precipitates. Different crystallization protocols were followed in which the salt type, pH and polyethylene glycol 8000 (PEG 8000) concentration were varied. The related crystalline phases were characterized by means of high-resolution synchrotron X-ray powder diffraction. In all cases, Uox complexed with the inhibitor 8-azaxanthine (AZA) was not altered from its robust orthorhombic I222 phase by variation of any of the factors listed above. However, in the absence of AZA during crystallization ligand-free Uox was significantly affected by the type of salt, resulting in different crystal forms for the four salts tested: sodium chloride, potassium chloride, ammonium chloride and ammonium sulfate. Remarkable alterations of some of these phases were observed upon gradual increase of the exposure time of the sample to the synchrotron beam in addition to variation of the PEG 8000 concentration. When Uox was crystallized in Tris buffer or pure water in the absence of salt, a distinct polymorph of orthorhombic symmetry (P21212) was obtained that was associated with significantly altered lattice dimensions in comparison to a previously reported isosymmetrical structure. The latter form of Uox exhibits enhanced stability to variation of pH and PEG 8000 concentration accompanied by minor modifications of the unit-cell dimensions in the ranges under study. Accurate lattice parameters were extracted for all crystalline phases. This study reveals the rich phase diagram of Uox, a protein of high pharmaceutical importance, which is associated with an enhanced degree of polymorphism. The outcome of our analysis verifies previously reported results as well as demonstrating polymorphs that have altered unit-cell dimensions with respect to known structural models. [source] "Breathing" in Adsorbate-Responsive Metal Tetraphosphonate Hybrid MaterialsCHEMISTRY - A EUROPEAN JOURNAL, Issue 27 2009Rosario M. Abstract Breathe easy: Reversible H2O and NH3 gas uptake by 2D calcium tetraphosphonates (see figure) is accompanied by framework structural changes similar to those previously reported for some carboxylate-based hybrids. This breathing mechanism is accompanied by a volume increase of 55,%, while maintaining the topology and crystallinity of the material. The structures of various layered calcium tetraphosphonates (CaH6DTMP; H8DTMP=hexamethylenediamine tetrakis(methylenephosphonic acid)), have been determined. Starting from CaH6DTMP,2H2O, thermal treatment and subsequent exposure to NH3 and/or H2O vapors led to four new compounds that showed high storage capacity of guest species between the layers (up to ten H2O/NH3 molecules) and a maximum volume increase of 55,%. The basic building block for these phosphonates consists of an eight-membered ring chelating Ca2+ through two phoshonate groups, and the organic ligand is located within the layers, which are held together by hydrogen bonds. The structural analysis revealed that the uptake/removal of guest species (H2O and NH3) induces significant changes in the framework not only by changing the interlayer distances but also through important conformational changes of the organic ligand. An anisotropic breathing motion could be quantified by the changes of the unit-cell dimensions and ligand arrangements in four crystalline derivatives. Complete characterization revealed the existence of interconversion reactions between the different phases upon gas uptake and release. The observed behavior represents, to the best of our knowledge, the first example of a breathing-like mechanism in metal phosphonates that possess a 2D topology. [source] |