Unit Mass (unit + mass)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


The molecular composition of soil organic matter as determined by 13C NMR and elemental analyses and correlation with pesticide sorption

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 6 2006
R. Ahmad
Summary Although the chemical composition of soil organic matter (SOM) is known to significantly influence sorption of pesticides and other pollutants, it has been difficult to determine the molecular nature of SOM in situ. Here, using 13C nuclear magnetic resonance (NMR) data and elemental composition in a molecular mixing model, we estimated the molecular components of SOM in 24 soils from various agro-ecological regions. Substantial variations were revealed in the molecular nature of SOM. As a proportion of soil carbon the proportion of the carbonyl component ranged from 0.006 to 0.05, charcoal from 0 to 0.15, protein from 0.09 to 0.29, aliphatic from 0.14 to 0.30, carbohydrate from 0.21 to 0.31, and lignin from 0.05 to 0.42. The relationships between Koc (sorption per unit mass of organic carbon) of carbaryl (1-naphthyl methylcarbamate) and phosalone (S- 6-chloro-2,3-dihydro-2-oxobenzoxazol-3-ylmethyl O,O -diethyl phosphorodithioate) and the molecular nature of organic matter in the soils were significant. Of the molecular components estimated, lignin and charcoal contents correlated best with sorption of carbaryl and phosalone. Aliphatic, carbohydrate and protein contents were found to be negatively correlated with the Koc of both pesticides. The study highlights the importance of the molecular nature of SOM in determining sorption affinities of non-ionic pesticides and presents an indirect method for sorption estimation of pesticides. [source]


Invertebrate communities associated with a native (Vallisneria americana) and an alien (Trapa natans) macrophyte in a large river

FRESHWATER BIOLOGY, Issue 11 2003
David L. Strayer
Summary 1. We used a corer and a Downing box sampler to sample macroinvertebrates living on and beneath the introduced Trapa natans and the native Vallisneria americana in the freshwater tidal Hudson River, New York. 2. Densities of macroinvertebrates were higher in Trapa than in Vallisneria, and higher in the interior of plant beds than at their edges. These effects were largely a result of high plant biomass in Trapa beds and in bed interiors (the plants have similar surface area per unit mass). 3. The composition of both epiphytic and benthic macroinvertebrates differed distinctly between Trapa and Vallisneria, and also seasonally. 4. These compositional differences were not easily interpretable as rising from possible differences in oxygen concentrations, fish predation, or water circulation in the two macrophytes. 5. Sida crystallina (Cladocera) collected from Trapa contained more haemoglobin than those collected from Vallisneria. 6. The replacement of Vallisneria by Trapa in the Hudson probably increased system-wide biodiversity and food for fish, although macroinvertebrates in Trapa beds may not be readily available to fish because of low oxygen concentration there. [source]


Algorithm for determining optimum sequestration depth of CO2 trapped by residual gas and solubility trapping mechanisms in a deep saline formation

GEOFLUIDS (ELECTRONIC), Issue 4 2008
C. K. LIN
Abstract An algorithm is proposed here for determining the optimum sequestration depth (in terms of depth corresponding to maximum net income per unit rock volume) in a saline formation for CO2 trapped by residual gas and solubility trapping mechanisms. The Peng,Robinson equation of state was used to determine the density and fugacity of sequestered CO2 and the compression energy required for CO2 injection. Geochemist's Workbench®, a commercial geochemical software package, was used to estimate CO2 solubility in groundwater. Operational costs and CO2 emissions due to compression energy consumption were estimated. A hypothetical reference case was constructed to illustrate the proposed algorithm, assuming constant values of geothermal gradient, hydrostatic pressure gradient, sweep efficiency and initial groundwater chemistry, with a depth-dependent porosity and porosity-dependent saturation of residual gas. In general, the algorithm was illustrated successfully for the hypothetical reference case and produced the following results. The depth corresponding to maximum trapping capacity was approximately 3000 m, but the depth representing maximum net income was approximately 1300 m. CO2 emissions due to compression energy consumption per unit mass of CO2 sequestration cannot be ignored, but may be <0.15, even down to a depth of 7000 m. Both the trapping capacity and net income of CO2 sequestration decreased with geothermal gradient, but the corresponding optimum depths increased with geothermal gradient. [source]


Effect of supplementary firing options on cycle performance and CO2 emissions of an IGCC power generation system

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 7 2009
N. V. Gnanapragasam
Abstract Supplementary firing is adopted in combined-cycle power plants to reheat low-temperature gas turbine exhaust before entering into the heat recovery steam generator. In an effort to identify suitable supplementary firing options in an integrated gasification combined-cycle (IGCC) power plant configuration, so as to use coal effectively, the performance is compared for three different supplementary firing options. The comparison identifies the better of the supplementary firing options based on higher efficiency and work output per unit mass of coal and lower CO2 emissions. The three supplementary firing options with the corresponding fuel used for the supplementary firing are: (i) partial gasification with char, (ii) full gasification with coal and (iii) full gasification with syngas. The performance of the IGCC system with these three options is compared with an option of the IGCC system without supplementary firing. Each supplementary firing option also involves pre-heating of the air entering the gas turbine combustion chamber in the gas cycle and reheating of the low-pressure steam in the steam cycle. The effects on coal consumption and CO2 emissions are analysed by varying the operating conditions such as pressure ratio, gas turbine inlet temperature, air pre-heat and supplementary firing temperature. The results indicate that more work output is produced per unit mass of coal when there is no supplementary firing. Among the supplementary firing options, the full gasification with syngas option produces the highest work output per unit mass of coal, and the partial gasification with char option emits the lowest amount of CO2 per unit mass of coal. Based on the analysis, the most advantageous option for low specific coal consumption and CO2 emissions is the supplementary firing case having full gasification with syngas as the fuel. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Bt -maize as a potential trap crop for management of Eldana saccharina Walker (Lep., Pyralidae) in sugarcane

JOURNAL OF APPLIED ENTOMOLOGY, Issue 4 2007
M. G. Keeping
Abstract:, Notwithstanding the introduction of several pest management tactics, the stalk borer Eldana saccharina Walker (Lep., Pyralidae) remains the most serious pest in South African sugarcane. A novel tactic for managing this pest in sugarcane would be the use of a dead-end trap crop that attracts moths for oviposition and curtails subsequent larval development, thereby reducing pest population size. Glasshouse bioassays, in which moths chose to oviposit on maize producing Bacillus thuringiensis Cry1Ab toxin (Bt -maize), non- Bt -maize or sugarcane of two cultivars (borer-resistant and -susceptible), showed that E. saccharina laid significantly more eggs and egg batches per dry leaf and unit mass of dry leaf on maize (Bt or non- Bt) than on either of the cane cultivars. When moths had a choice of ovipositing on 2-, 3-, 4- or 5-month-old maize (Bt and non- Bt), dry leaf number and mass of dry leaf material was significantly correlated with number of eggs and egg batches, indicating that older plants, which carried larger amounts of dry leaf matter, were more attractive for oviposition. Finally, glasshouse assays in which hatching larvae fed on 2.5-, 3.5- and 4.5-month-old Bt and non- Bt -maize plants, showed that the Cry1Ab toxin was effective in killing E. saccharina larvae in all Bt -maize plant growth stages, confirming that Bt -maize fulfilled the third requirement (curtailing larval development) of a dead-end trap crop for this pest. We argue that Bt -maize warrants further testing in the field as a trap crop, both alone and as a component of a ,push,pull' or habitat management system for E. saccharina in sugarcane. [source]


Operating and scale-up factors for the electrolytic removal of algae from eutrophied lakewater

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 8 2002
Catalino G Alfafara
Abstract Electrolytic removal of algae was conducted in batch and continuous reactors to investigate operating factors affecting removal efficiency and to explore engineering relationships which could be useful for operation and scale-up. The system integrated both electro-flocculation and electro-flotation mechanisms by using polyvalent metal anodes and inert metal cathodes. Batch reactor studies confirmed that high electrical input power or higher electrical current achieved higher and faster removal efficiencies. Natural liquid circulation was observed during electrolytic operation and increased with higher electrical power. However, a small degree of external mixing may be useful at lower electrical power input. Electro-flotation alone could not achieve complete algae removal (maximum efficiency 40,50%), and showed the importance of algal floc formation for the complete removal of algae. In continuous electrolysis experiments, the ratio of the volumetric current intensity (amperes,dm,3) and the chlorophyll a loading (mg,dm,3,h,1) was found to be a useful operating and scale-up factor to balance high algal removal efficiency with minimum release of excess aluminum. This ratio was eventually found to be just the charge dose or the amount of coulombs required to remove a unit mass of chlorophyll a. The optimum charge dose was determined and used to relate the operating current and electrolysis time of a continuous process. © 2002 Society of Chemical Industry [source]


Can phosphorus limitation contribute to the maintenance of sex?

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2009
A test of a key assumption
Abstract Why sex is so common remains unclear; what is certain is that the predominance of sex despite its profound costs means that it must confer major advantages. Here, we use elemental and nucleic acid assays to evaluate a key element of a novel, integrative hypothesis considering whether sex might be favoured because of differences in body composition between sexuals and asexuals. We found that asexual Potamopyrgus antipodarum, a New Zealand snail, have markedly higher bodily phosphorus and nucleic acid content per unit mass than sexual counterparts. These differences coincide with and are almost certainly linked to the higher ploidy of the asexuals. Our results are the first documented body composition differences between sexual and asexual organisms, and the first detected phenotypic difference between sexual and asexual P. antipodarum, an important natural model system for the study of the maintenance of sex. These findings also verify a central component of our hypothesis that competition between diploid sexuals and polyploid asexuals could be influenced by phosphorus availability. [source]


Evaluating Energy Consumption and Efficiency of a Twin-Screw Extruder

JOURNAL OF FOOD SCIENCE, Issue 5 2002
M. Liang
ABSTRACT: Using the results from twin-screw extrusion of corn meal, both energy consumption and extruder efficiency were found to be significantly correlated with screw speed and specific feeding load (SFL). An increase in the SFL decreased the total specific mechanical energy, but increased the extruder efficiency. SFL influenced the extruder efficiency more than the screw speed. Increasing the screw speed from 300 to 450 rpm at a constant SFL level increased the extruder efficiency by 6 to 11%, whereas an increase of SFL from 0.0026 to 0.0038 kg rev 1 raised the extruder efficiency by 30%. Of the mechanical energy consumed per unit mass of extrudate, over 98% were used for shearing or viscous dissipation and less than 1.5% were for pumping during twin-screw extrusion of corn meal. [source]


Ultrasonic processing of suspensions of hematite nanopowder stabilized with sodium polyacrylate,

AICHE JOURNAL, Issue 11 2009
P. Ding
Abstract The effect of power input, solid content, surfactant concentration, and pH on the kinetics of wet deagglomeration of hematite nanopowder in ultrasonic comminution device and on the rheology of resulting suspensions has been investigated and compared with the kinetics of deagglomeration and rheology of the suspensions of goethite nanopowder. It has been found that the main mechanisms are fragmentation and erosion, which leads to bimodal transient size distributions of aggregates. Fragmentation of large aggregates starts after certain delay time but erosion of nanoparticles starts from very beginning of processing. Deaggregation of hematite nanopowder is only possible in the presence of surfactant, but increase of concentration of surfactant above certain critical value does not affect kinetics of deagglomeration. The increase of solid concentration up to 20 w/w% reduces the amount of energy necessary for deagglomeration of unit mass of the powder. Effect of pH on the kinetics of deagglomeration and the morphology/rheology of the resulting suspensions is discussed. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Tissue distribution of radioactivity following intranasal administration of radioactive microspheres

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 5 2001
J. E. Eyles
The aim of this study was to increase understanding of the kinetics of microparticle distribution and elimination following intranasal application. To do this we investigated the in-vivo distribution of radioactivity following intranasal instillation of scandium-46 labelled styrene-divinyl benzene 7-,m-diameter microspheres. Groups of BALB/c mice received 0.250 mg (47.5 kBq) particles suspended in either 50-,l or 10-,l volumes of phosphate buffered saline. The in-vivo distribution of radioactivity was influenced by the volume of liquid that was used to instil the microsphere suspension. Comparatively large (50 ,l) administration vehicle volumes resulted in substantial bronchopulmonary deposition (, 50% of administered dose). Intranasal instillation of microspheres suspended in 10-,l volumes tended to restrict particle deposition initially to the nasal cavity. For both administration vehicle volumes tested, the radioactivity per unit mass of excised nasal-associated lymphoid tissue (NALT) was found to be consistently elevated relative to other tissues. This corroborates the findings of other workers who have previously identified NALT as an active site of microparticle accumulation following intranasal application. Elimination via the alimentary canal was the principal fate of intranasally applied radiolabeled material. No significant concentration of radioactivity within excised gut-associated lymphoid tissue (GALT) (Peyer's patches) was noted. At latter time points we observed, in mice that received the 50-,l volume particle suspension nasally, accumulation of potentially relevant quantities of radioactivity in the liver (0.3% after 576 h) and spleen (0.04% after 576 h). Thus, our data corroborate the notion that epithelial membranes in the lung are probably less exclusive to the entry of microparticulates into systemic compartments than are those mucosae in the gastrointestinal tract or nasopharynx. This effect may contribute to the effectiveness of pulmonary delivered antigen-loaded microparticles as humoral immunogens. [source]


The substructure hierarchy in dark matter haloes

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2010
Carlo Giocoli
ABSTRACT We present a new algorithm for identifying the substructure within simulated dark matter haloes. The method is an extension of that proposed by Tormen, Moscardini & Yoshida and Giocoli, Tormen & van den Bosch, which identifies a subhalo as a group of self-bound particles that prior to being accreted by the main progenitor of the host halo belonged to one and the same progenitor halo (hereafter ,satellite'). However, this definition does not account for the fact that these satellite haloes themselves may also have substructure, which thus gives rise to sub-subhaloes, etc. Our new algorithm identifies substructures at all levels of this hierarchy, and we use it to determine the mass function of all substructure (counting subhaloes, sub-subhaloes, etc.). On average, haloes which are formed more recently tend to have a larger mass fraction in substructure and to be less concentrated than average haloes of the same mass. We provide quantitative fits to these correlations. Even though our algorithm is very different from that of Gao et al., we also find that the subhalo mass function per unit mass at redshift z= 0 is universal. This universality extends to any redshift only if one accounts for the fact that host haloes of a given mass are less concentrated at higher redshifts, and concentration and substructure abundance are anticorrelated. This universality allows a simple parametrization of the subhalo mass function integrated over all host halo masses, at any given time. We provide analytic fits to this function which should be useful in halo model analyses which equate galaxies with halo substructure when interpreting clustering in large sky surveys. Finally, we discuss systematic differences in the subhalo mass function that arise from different definitions of (host) halo mass. [source]


The baryonic and dark matter properties of high-redshift gravitationally lensed disc galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2007
P. Salucci
ABSTRACT We present a detailed study of the structural properties of four gravitationally lensed disc galaxies at z= 1. Modelling the rotation curves on sub-kpc scales, we derive the values for the disc mass, the reference dark matter density and core radius, and the angular momentum per unit mass. The derived models suggest that the rotation curve profile and amplitude are best fitted with a dark matter component similar to those of local spiral galaxies. The stellar component also has a similar length-scale, but with substantially smaller masses than similarly luminous disc galaxies in the local Universe. Comparing the average dark matter density inside the optical radius, we find that the disc galaxies at z= 1 have larger densities (by up to a factor of ,7) than similar disc galaxies in the local Universe. Furthermore, the angular momentum per unit mass versus reference velocity is well matched to the local relation, suggesting that the angular momentum of the disc remains constant between high redshifts and the present day. Though statistically limited, these observations point towards a spirals' formation scenario in which stellar discs are slowly grown by the accretion of angular momentum conserving material. [source]


Forming supermassive black holes by accreting dark and baryon matter

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2006
Jian Hu
ABSTRACT Given a large-scale mixture of self-interacting dark matter (SIDM) particles and baryon matter distributed in the early Universe, we advance here a two-phase accretion scenario for forming supermassive black holes (SMBHs) with masses around ,109 M, at high redshifts z(,6). The first phase is conceived to involve a rapid quasi-spherical and quasi-steady Bondi accretion of mainly SIDM particles embedded with baryon matter on to seed black holes (BHs) created at redshifts z, 30 by the first generation of massive Population III stars; this earlier phase rapidly gives birth to significantly enlarged seed BH masses of during z, 20,15, where ,0 is the cross-section per unit mass of SIDM particles and Cs is the velocity dispersion in the SIDM halo referred to as an effective ,sound speed'. The second phase of BH mass growth is envisaged to proceed primarily via baryon accretion, eventually leading to SMBH masses of MBH, 109 M,; such SMBHs may form either by z, 6 for a sustained accretion at the Eddington limit or later at lower z for sub-Eddington mean accretion rates. In between these two phases, there is a transitional yet sustained diffusively limited accretion of SIDM particles which in an eventual steady state would be much lower than the accretion rates of the two main phases. We intend to account for the reported detections of a few SMBHs at early epochs, e.g. Sloan Digital Sky Survey (SDSS) 1148+5251 and so forth, without necessarily resorting to either super-Eddington baryon accretion or very frequent BH merging processes. Only extremely massive dark SIDM haloes associated with rare peaks of density fluctuations in the early Universe may harbour such early SMBHs or quasars. Observational consequences are discussed. During the final stage of accumulating a SMBH mass, violent feedback in circumnuclear environs of a galactic nucleus leads to the central bulge formation and gives rise to the familiar empirical MBH,,b correlation inferred for nearby normal galaxies with ,b being the stellar velocity dispersion in the galactic bulge; in our scenario, the central SMBH formation precedes that of the galactic bulge. [source]


Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers

OIKOS, Issue 3 2002
James H. Thorp
This paper addresses the river heterotrophy paradox, "How can animal biomass within riverine food webs be fueled primarily by autochthonous autotrophic production if the ecosystem as a whole is heterotrophic?". Reviewed, stable isotope data from tropical, temperate, and arctic rivers provide evidence consistent with the revised riverine productivity model (RPM): "The primary, annual energy source supporting overall metazoan production and species diversity in mid- to higher-trophic levels of most rivers (,4th order) is autochthonous primary production entering food webs via algal-grazer and decomposer pathways". The revised RPM does not conflict with the heterotrophy paradox because: (a) the decomposer (microbial loop) food pathway processes most of the transported, allochthonous and autochthonous carbon and, with algal respiration in some cases, is primarily responsible for a river's heterotrophic state (P/R<1); but (b) biomass production of mid- to higher-trophic levels is principally supported by an algal-grazer (phytoplankton and benthic microalgae) pathway that is only weakly linked to the decomposer pathway. The reason the algal-grazer pathway supports the majority of metazoan biomass is that allochthonous carbon is mostly recalcitrant, whereas carbon from autochthonous primary production, though much less plentiful, is commonly more labile (easier to assimilate), contains more energy per unit mass, and is typically preferred by metazoa. [source]


Reactivity of organosilicon precursors in remote hydrogen microwave plasma chemical vapor deposition of silicon carbide and silicon carbonitride thin-film coatings

APPLIED ORGANOMETALLIC CHEMISTRY, Issue 3 2010
A. M. Wrobel
Abstract A number of organosilicon precursors for silicon carbide and silicon carbonitride thin-film coatings, such as silanes, carbosilanes, aminosilanes, and disilazane, respectively, were characterized in terms of their reactivity in a remote microwave plasma chemical vapor deposition process, which was induced using hydrogen as plasma generating gas. The process displayed high selectivity with respect to the activating species and the chemical bonds in the molecular structure of the precursors. In view of very short life times of excited hydrogen plasma species the activation step takes place with an exclusive contribution of ground-state hydrogen atoms. The CH, CC, SiC, SiN, CN and NH bonds present in the molecules of the precursors are non-reactive and only the SiH or SiSi bonds play a key role in the activation step. The reactivity of the precursors was characterized in a quantitative way by the yield of the film growth parameter. The yield parameter expressing the mass of film per unit mass of the precursor fed to the reactor was calculated from the slopes of linear plots of time dependencies of film mass and precursor mass, which were determined for each investigated precursor. The reactivity of the precursors was found to be strongly dependent on the number of the SiH units present in their molecules and those containing two SiH units appeared to be most reactive. Copyright © 2009 John Wiley & Sons, Ltd. [source]


THE EFFECT OF SALTS ON THERMAL AND HYDRIC DILATATION OF POROUS BUILDING STONE*

ARCHAEOMETRY, Issue 3 2009
M. AL-NADDAF
Fifteen desalinated sandstone drill core samples from Umm Ishrin Sandstone Formation in Petra (Cambrian age) were used for this study. The samples were mineralogically analysed using X-ray diffraction and their physical properties were also determined. Samples with similar physical properties and mineralogical composition were taken for further experimental work. After desalination, thermal and hydric dilatation coefficients were measured, then three types of salts (NaCl, KCl and Na2SO4·10H2O), which have high solubility and consequently are the most dangerous to building stone (and are also detected in the sandstone monuments in Petra), were introduced into the samples and their contents were calculated. The results show that salt crystallization in the pores of building stones can increase their thermal dilatation and decrease their hydric dilatation to varying extents, depending on the nature of the salt. The average increase in the thermal dilatation coefficient per unit mass of salt is the lowest for the Na2SO4·10H2O-salted samples with a value of 5.3%, while the NaCl-salted samples have the highest value with 7.8% per salt mass. The average percentage of the decrease of the hydric dilatation coefficient is 1061% for Na2SO4·10H2O-salted samples per mass of salt content; the NaCl-salted samples have a value of 1510% per mass of salt content, and the KCl-salted samples almost the same value. For the salt-free samples, it was found that in climatic conditions with a high temperature range, the deterioration of sandstone due to temperature fluctuation is more effective than that caused by change in the moisture content, while samples with high salt content suffer more from hydric dilatation. [source]


Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility

BIOTECHNOLOGY & BIOENGINEERING, Issue 4 2003
Hongfei Jia
Abstract Nanoparticles provide an ideal remedy to the usually contradictory issues encountered in the optimization of immobilized enzymes: minimum diffusional limitation, maximum surface area per unit mass, and high effective enzyme loading. In addition to the promising performance features, the unique solution behaviors of the nanoparticles also point to a transitional region between the heterogeneous (with immobilized enzymes) and homogeneous (with soluble free enzymes) catalysis. The particle mobility, which is related to particle size and solution viscosity through Stokes-Einstein equation, may impact the reaction kinetics according to the collision theory. The mobility-activity relationship was examined through experimental studies and theoretical modeling in the present work. Polystyrene particles with diameters ranging from 110,1000 nm were prepared. A model enzyme, ,-chymotrypsin, was covalently attached to the nanoparticles up to 6.6 wt%. The collision theory model was found feasible in correlating the catalytic activities of particles to particle size and solution viscosity. Changes in the size of particles and the viscosity of reaction media, which all affect the mobility of the enzyme catalyst, evidently altered the intrinsic activity of the particle-attached enzyme. Compared to KM, kcat appeared to be less sensitive to particle size and viscosity. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng84: 406,414, 2003. [source]


Power consumption and maximum energy dissipation in a milliliter-scale bioreactor

BIOTECHNOLOGY PROGRESS, Issue 2 2010
Ralf Hortsch
Abstract Mean power consumption and maximum local energy dissipation were measured as function of operating conditions of a milliliter-scale stirred tank bioreactor (V = 12 mL) with a gas-inducing impeller. A standard laboratory-scale stirred tank bioreactor (V = 1,200 mL) with Rushton turbines was used as reference. The measured power characteristics (Newton number as function of Reynolds number) were the same on both scales. The changeover between laminar and turbulent flow regime was observed at a Reynolds number of 3,000 with the gas-inducing stirrer on a milliliter-scale. The Newton number (power number) in the turbulent flow regime was 3.3 on a milliliter-scale, which is close to values reported for six-blade Rushton turbines of standard bioreactors. Maximum local energy dissipation (,max) was measured using a clay/polymer flocculation system. The maximum local energy dissipation in the milliliter-scale stirred tank bioreactor was reduced compared with the laboratory-scale stirred tank at the same mean power input per unit mass (,ø), yielding ,max/,ø , 10 compared with ,max/,ø , 16. Hence, the milliliter-scale stirred tank reactor distributes power more uniformly in the reaction medium. These results are in good agreement with literature data, where a decreasing ,max/,ø with increasing ratio of impeller diameter to reactor diameter is found (d/D = 0.7 compared with d/D = 0.4). Based on these data, impeller speeds can now be easily adjusted to achieve the same maximum local energy dissipation at different scales. This enables a more reliable and robust scale-up of bioprocesses from milliliter-scale to liter-scale reactors. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]