Home About us Contact | |||
Unit Leaf Area (unit + leaf_area)
Selected AbstractsEnvironmental and developmental controls on specific leaf area are little modified by leaf allometryFUNCTIONAL ECOLOGY, Issue 4 2008R. Milla Summary 1Recent work shows that large leaves tend to require higher biomass investments per unit leaf area than small leaves. As a consequence, specific leaf area (SLA), which is a focus trait for a bulk of physiological and ecological research programs, is dependent on leaf size variation. Here, we address whether size dependency alters the outcome of research dealing with SLA responses to environmental or developmental change. 2We compiled lamina mass (M) and surface area (A) data for 2158 leaves of 26 species, coming from studies investigating the reaction of SLA to variation in rainfall, growth,season length, light intensity, atmospheric CO2, fire frequency, type of branch and leaf and plant age. We fitted the function M = a Ab to the data of each experimental situation separately, and implemented a method to split SLA response as measured in the original study (SLADm) into response due to leaf size dependency (SLADa), and response due to treatment effects, after controlling for leaf size dependency (SLADt). 3The sign of the reaction did not differ between SLADm and SLADt. However, the magnitude of that response changed for most contrasts, though in variable ways. 4Conclusions of past experiments hold, for the most part, after re-analysis including size dependency. However, given the large heterogeneity found here, we advise that future work investigating SLA be prepared to account for leaf size dependency when the factors under focus are suspected to alter leaf size. [source] Carbon dioxide uptake, water relations and drought survival for Dudleya saxosa, the ,rock live-forever', growing in small soil volumesFUNCTIONAL ECOLOGY, Issue 4 2007P. S. NOBEL Summary 1Although many plants grow in rock crevices and other regions of small soil volume, including over 20 000 epiphytic and hemi-epiphytic species, analyses of the actual soil volume occupied, the water availability in that soil, the water-storage capacity in the shoots and underground organs, and the photosynthetic pathway utilized have rarely been combined. 2Dudleya saxosa (M.F. Jones) Britton and Rose (Crassulaceae), growing in the Sonoran Desert, has very shallow roots that occupied soil volumes averaging only 43 × 10,6 m3 per medium-sized plant. This volume of soil can hold about the same amount of water (10 g) as can be stored in the leaves, corm and roots combined (11 g), but at a sufficiently high water potential for transfer to the plant for less than 1 week after a substantial rainfall. 3About 80% of the net carbon dioxide uptake by D. saxosa over a 24-h period occurred during the daytime (C3) under wet conditions, the daily total decreasing by 34% and the pattern shifting to nocturnal net CO2 uptake (CAM) after 46 days' drought. Seventy-seven days' drought eliminated its daily net CO2 uptake. 4Stomatal frequency was only 67 mm,2 on the adaxial (upper) surface and twofold lower on the abaxial surface. The cuticle was thick, 34 µm for the adaxial surface. Leaves had 24 mesophyll cell layers, leading to a high mesophyll cell surface area per unit leaf area of 142. 5The three leaf anatomical features plus utilization of CAM increased net CO2 uptake per unit of water transpired, and helped D. saxosa thrive in a small soil volume, with the underground corm being a major supplier of water to the succulent leaves during 2.5 months of drought. The maximum water-holding capacity of the soil explored by the roots closely matched the maximum water-holding capacity of the plant, reflecting the conservative strategy used by D. saxosa in a stressful semi-arid environment. [source] Allocation of above-ground growth is related to light in temperate deciduous saplingsFUNCTIONAL ECOLOGY, Issue 4 2003D. A. King Summary 1Allocational shifts in response to light may be an important factor in allowing plants to survive in shade, while increasing their extension rates and competitive ability in sun. To investigate this response, the allocation of above-ground growth between leaves, branches and stems was studied in saplings of Acer pensylvanicum L. and Castenea dentata (Marsh.) Borkh. in the Appalachian mountains of western Virginia, USA. Measurements of current leaf biomass, current and past year leaf numbers and the growth ring widths of branches and stem were used to estimate biomass partitioning for saplings growing in locations ranging from forest understorey to large openings. 2Both species showed higher leaf area per unit leaf biomass (SLA) and higher allocation of above-ground growth to leaves in shade than in sun. 3There were no differences between species in the slopes of the relationships of allocation and SLA vs estimated irradiance, but SLA was significantly greater in A. pensylvanicum than in C. dentata at a given light level. Hence, somewhat lower production per unit leaf area is required to maintain the canopy in A. pensylvanicum, consistent with foresters' ratings of greater shade tolerance for this species. 4Greater foliar allocation in shade than sun has also been observed in broad-leaved evergreen saplings, but generally not in seedlings. This difference is probably related to differences in size and age between seedlings and saplings. Young seedlings typically show exponential growth with no immediate foliar losses, while shaded saplings lie closer to the steady state where new leaves replace old ones with little additional stem growth. 5Thus trees shift their allocation patterns in an acclimatory fashion, depending on their size and light environment, with the costs of replacing senesced leaves becoming of consequence as juveniles age. [source] Acclimation of photosynthesis and respiration to elevated atmospheric CO2 in two Scrub OaksGLOBAL CHANGE BIOLOGY, Issue 4 2002Graham J. Hymus Abstract For two species of oak, we determined whether increasing atmospheric CO2 concentration (Ca) would decrease leaf mitochondrial respiration (R) directly, or indirectly owing to their growth in elevated Ca, or both. In particular, we tested whether acclimatory decreases in leaf-Rubisco content in elevated Ca would decrease R associated with its maintenance. This hypothesis was tested in summer 2000 on sun and shade leaves of Quercus myrtifolia Willd. and Quercus geminata Small. We also measured R on five occasions between summer 1999 and 2000 on leaves of Q. myrtifolia. The oaks were grown in the field for 4 years, in either current ambient or elevated (current ambient + 350 µmol mol,1) Ca, in open-top chambers (OTCs). For Q. myrtifolia, an increase in Ca from 360 to 710 µmol mol,1 had no direct effect on R at any time during the year. In April 1999, R in young Q. myrtifolia leaves was significantly higher in elevated Ca,the only evidence for an indirect effect of growth in elevated Ca. Leaf R was significantly correlated with leaf nitrogen (N) concentration for the sun and shade leaves of both the species of oak. Acclimation of photosynthesis in elevated Ca significantly reduced maximum RuBP-saturated carboxylation capacity (Vc max) for both the sun and shade leaves of only Q. geminata. However, we estimated that only 11,12% of total leaf N was invested in Rubisco; consequently, acclimation in this plant resulted in a small effect on N and an insignificant effect on R. In this study measurements of respiration and photosynthesis were made on material removed from the field; this procedure had no effect on gas exchange properties. The findings of this study were applicable to R expressed either per unit leaf area or unit dry weight, and did not support the hypothesis that elevated Ca decreases R directly, or indirectly owing to acclimatory decreases in Rubisco content. [source] Response of Photosynthesis and Water Relations of Rice (Oryza sativa) to Elevated Atmospheric Carbon Dioxide in the Subhumid Zone of Sri LankaJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 2 2003W. A. J. M. De Costa Abstract The objective of the present paper is to determine the response of the physiological parameters related to biomass production and plant water relations in a standard Sri Lankan rice (Oryza sativa) variety (BG-300) to elevated CO2 (i.e. 570 µmol/mol). During two seasons, rice crops were grown under three different experimental treatments; namely, at 570 µmol/mol (i.e. ,elevated') and 370 µmol/mol (,ambient') CO2 within open top chambers, and at ambient CO2 under open field conditions. Leaf net photosynthetic rate in the elevated treatment increased by 22,75 % in comparison to the ambient. However, the ratio between intercellular and ambient CO2 concentrations remained constant across different CO2 treatments and seasons. CO2 enrichment decreased individual leaf stomatal conductance and transpiration rate per unit leaf area, and increased both leaf and canopy temperatures. However, the overall canopy stomatal conductance and daily total canopy transpiration rate of the elevated treatment were approximately the same as those achieved under ambient conditions. This was because of the significantly greater leaf area index and greater leaf,air vapour pressure deficit under CO2 enrichment. The leaf chlorophyll content increased significantly under elevated CO2; however, the efficiency (i.e. photochemical yield) of light energy capture by Photosystem II (i.e. Fv/Fm) in chlorophyll a did not show a significant and consistent variation with CO2 enrichment. [source] Biomass allocation and leaf life span in relation to light interception by tropical forest plants during the first years of secondary successionJOURNAL OF ECOLOGY, Issue 6 2008N. Galia Selaya Summary 1We related above-ground biomass allocation to light interception by trees and lianas growing in three tropical rain forest stands that were 0.5, 2 and 3-year-old regeneration stages after slash and burn agriculture. 2Stem height and diameter, leaf angle, the vertical distribution of total above-ground biomass and leaf longevity were measured in individuals of three short-lived pioneers (SLP), four later successional species (LS) and three lianas (L). Daily light capture per individual (,d) was calculated with a canopy model. Mean daily light interception per unit leaf area (,area), leaf mass (,leaf mass) and above-ground mass (,mass) were used as measures of instantaneous efficiency of biomass use for light capture. 3With increasing stand age, vegetation height and leaf area index increased while light at the forest floor declined from 34 to 5%. The SLP, Trema micanthra and Ochroma pyramidale, dominated the canopy early in succession and became three times taller than the other species. SLP had lower leaf mass fractions and leaf area ratios than the other groups and this difference increased with stand age. 4Over time, the SLP intercepted increasingly more light per unit leaf mass than the other species. Lianas, which in the earliest stage were self-supporting and started climbing later on, gradually became taller at a given mass and diameter than the trees. Yet, they were not more efficient than trees in light interception. 5SLP had at least three-fold shorter leaf life spans than LS and lianas. Consequently, total light interception calculated over the mean life span of leaves (,leaf mass total = ,area × SLAdeath leaves× leaf longevity) was considerably lower for the SLP than for the other groups. 6Synthesis. We suggest that early dominance in secondary forest is associated with a high rate of leaf turnover which in turn causes inefficient long-term use of biomass for light capture, whereas persistence in the shade is associated with long leaf life spans. This analysis shows how inherent tradeoffs in crown and leaf traits drive long-term competition for light, and it presents a conceptual tool to explain why early dominants are not also the long-term dominants. [source] Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life spanJOURNAL OF ECOLOGY, Issue 3 2002Ian J. Wright Summary 1,Leaf life span (LL) and leaf mass per area (LMA) are fundamental traits in the carbon economy of plants, representing the investment required per unit leaf area (LMA) and the duration of the resulting benefit (LL). Species on dry and infertile soils converge towards higher LMA. It has been generally assumed that this allows species from low-resource habitats to achieve longer average leaf life spans, as LMA and LL are often correlated. 2,Leaf life span and LMA were measured for 75 perennial species from eastern Australia. Species were sampled from nutrient-rich and nutrient-poor sites within high and low rainfall regions. LL and LMA were positively correlated across species within each site. In addition, evolutionary divergences in LL and LMA were correlated within each site, indicating that cross-species relationships were not simply driven by differences between higher taxonomic groups. 3,Within a rainfall zone, LL,LMA combinations shifted as expected along common axes of variation such that species on poorer soils had higher LMA and longer LL, but significantly so only at high rainfall. 4,Low rainfall species were expected to have shorter LL at a given LMA or, equally, require higher LMA to achieve a given LL, i.e. shift to a parallel axis of variation, and this was observed on both nutrient-rich and nutrient-poor soils. On average, 30% higher LMA was seemingly required at dry sites to achieve a given LL. Thus, convergence towards higher LMA has different consequences for leaf life span in dry and nutrient-poor habitats. 5,The broad shifts in LL,LMA combinations between site types were also seen when comparing closely related species-pairs (phylogenetically independent contrasts) occurring on nutrient-rich and nutrient-poor soils (within each rainfall zone), and at high- and low-rainfall sites (at each soil nutrient level). [source] PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficitNEW PHYTOLOGIST, Issue 3 2006Christine Granier Summary ,,The high-throughput phenotypic analysis of Arabidopsis thaliana collections requires methodological progress and automation. Methods to impose stable and reproducible soil water deficits are presented and were used to analyse plant responses to water stress. ,,Several potential complications and methodological difficulties were identified, including the spatial and temporal variability of micrometeorological conditions within a growth chamber, the difference in soil water depletion rates between accessions and the differences in developmental stage of accessions the same time after sowing. Solutions were found. ,,Nine accessions were grown in four experiments in a rigorously controlled growth-chamber equipped with an automated system to control soil water content and take pictures of individual plants. One accession, An1, was unaffected by water deficit in terms of leaf number, leaf area, root growth and transpiration rate per unit leaf area. ,,Methods developed here will help identify quantitative trait loci and genes involved in plant tolerance to water deficit. [source] Developmental shifts in watermelon growth and reproduction caused by the squash bug, Anasa tristisNEW PHYTOLOGIST, Issue 2 2002Maciej Biernacki Summary ,,Compared with leaf-feeding herbivores, little is known about how sap-feeding herbivores affect plant growth, morphology and reproduction. This study examines effects of the sap-feeding squash bug ( Anasa tristis ) on watermelon ( Citrullus lanatus ) root, leaf and reproductive structures. ,,Plants at the four-leaf stage were exposed to different densities of caged squash bugs for 67 d (to plant maturity). ,,Initial effects were on roots. Herbivory was associated with a significant reduction in mean total root length, root surface area and number of root tips, as well as an increase in root diameters. Herbivore-exposed plants had significantly more leaves, although leaf lifespan was decreased. Both total plant dry mass and fruit dry mass per unit leaf area were significantly greater in controls. Significant effects of herbivores on plant reproductive traits included delayed flower formation (by 7,12 d), change in floral sex ratio (in favor of femaleness), increased fruit abortion, and smaller fruit size. ,,Developmental consequences were related to changes in plant water relations, including decreased water-use efficiency. Water use in treated plants was three to nine times greater per unit of plant dry mass than in controls. [source] How can we predict the effects of elevated CO2 on the balance between perennial C3 grass species competing for light?NEW PHYTOLOGIST, Issue 1 2002F. Teyssonneyre Summary ,,Changes in the balance between mixed plant species have been reported under elevated [CO2] compared with ambient atmospheric [CO2]. We hypothesized that species response to elevated CO2 in mixture can be explained by taking into account resource partitioning between mixed species. ,,This hypothesis was tested experimentally on three perennial C3 grass species (Lolium perenne, Festuca arundinacea and Holcus lanatus) grown in monocultures and in binary mixtures (Lolium,Festuca and Lolium,Holcus) under mild (frequent cuts) or severe (infrequent cuts) competition for light and at a high N supply (40 g N m,2). ,,Under mild competition for light, the dry matter yield response to elevated CO2 of the mixed grass species was similar to that observed in monocultures. By contrast, under severe light competition, the grass species that absorbed more light per unit leaf area (Holcus and Festuca), also had a greater response to elevated CO2 in mixture compared with monoculture. ,,Under our experimental conditions, we have shown that the dry matter yield response to CO2 in mixture can be predicted from both the species response in monoculture, and the light capture per unit leaf area in ambient CO2 of the mixed compared with the pure grasses. [source] Effects of prolonged restriction in water supply on photosynthesis, shoot development and storage root yield in sweet potatoPHYSIOLOGIA PLANTARUM, Issue 1 2008Philippus Daniel Riekert Van Heerden Besides the paucity of information on the effects of drought stress on photosynthesis and yield in sweet potato [Ipomoea batatas (L.) Lam.], available reports are also contradictory. The aim of this study was to shed light on the effects of long-term restricted water supply on shoot development, photosynthesis and storage root yield in field-grown sweet potato. Experiments were conducted under a rainout shelter where effects of restricted water supply were assessed in two varieties (Resisto and A15). Large decreases in stomatal conductance occurred in both varieties after 5 weeks of treatment. However, continued measurements revealed a large varietal difference in persistence of this response and effects on CO2 assimilation. Although restricted water supply decreased leaf relative water content similarly in both varieties, the negative effects on stomatal conductance disappeared with time in A15 (indicating high drought acclimation capacity) but not in Resisto, thus leading to inhibition of CO2 assimilation in Resisto. Chlorophyll a fluorescence measurements, and the relationship between stomatal conductance, intercellular CO2 concentration and CO2 assimilation rate, indicated that drought stress inhibited photosynthesis primarily through stomatal closure. Although yield loss was considerably larger in Resisto, it was also reduced by up to 60% in A15, even though photosynthesis, expressed on a leaf area basis, was not inhibited in this variety. In A15 yield loss appears to be closely associated with decreased aboveground biomass accumulation, whereas in Resisto, combined effects on biomass accumulation and photosynthesis per unit leaf area are indicated, suggesting that research aimed at improving drought tolerance in sweet potato should consider both these factors. [source] Leaves of Lianas and Self-Supporting Plants Differ in Mass per Unit Area and in Nitrogen ContentPLANT BIOLOGY, Issue 3 2000M. Kazda Abstract: The aim of this study was to test the hypothesis that the reduction in supporting tissues in climbers compared to self-supporting plants is also true for their leaves, and that climbers generally require higher leaf nitrogen than self-supporting plants to accomplish fast growth. This hypothesis was tested using paired samples of both growth forms with assessment of leaf area index above the sampled plants (LAIa) in a tropical rain forest in Gabon. The sampling protocol ensured that within a highly fluctuating low canopy environment, the growth conditions were identical for each pair sampled. The results confirmed the hypothesis. Lianas had significantly lower leaf mass per unit leaf area (LMA) than their supporters. Liana leaves also contained significantly more nitrogen than host tree leaves. The differences in nitrogen concentration between liana and tree leaves reversed for the most shaded sites, when nitrogen was expressed on a leaf area base (Narea). Significant regression between leaf nitrogen and LAIa was found for the climbers on the shaded sites but not for their supporters. This indicated better acclimation of climbers to prevailing light conditions. Better nitrogen allocation at low LMA, together with lower carbon costs for building supporting tissues, makes lianas highly competitive, especially where high nitrogen availability is assured. [source] Would transformation of C3 crop plants with foreign Rubisco increase productivity?PLANT CELL & ENVIRONMENT, Issue 2 2004A computational analysis extrapolating from kinetic properties to canopy photosynthesis ABSTRACT Genetic modification of Rubisco to increase the specificity for CO2 relative to O2 (,) would decrease photorespiration and in principle should increase crop productivity. When the kinetic properties of Rubisco from different photosynthetic organisms are compared, it appears that forms with high , have low maximum catalytic rates of carboxylation per active site (kcc). If it is assumed that an inverse relationship between kcc and , exists, as implied from measurements, and that an increased concentration of Rubisco per unit leaf area is not possible, will increasing , result in increased leaf and canopy photosynthesis? A steady-state biochemical model for leaf photosynthesis was coupled to a canopy biophysical microclimate model and used to explore this question. C3 photosynthetic CO2 uptake rate (A) is either limited by the maximum rate of Rubisco activity (Vcmax) or by the rate of regeneration of ribulose-1,5-bisphosphate, in turn determined by the rate of whole chain electron transport (J). Thus, if J is limiting, an increase in , will increase net CO2 uptake because more products of the electron transport chain will be partitioned away from photorespiration into photosynthesis. The effect of an increase in , on Rubisco-limited photosynthesis depends on both kcc and the concentration of CO2 ([CO2]). Assuming a strict inverse relationship between kcc and ,, the simulations showed that a decrease, not an increase, in , increases Rubisco-limited photosynthesis at the current atmospheric [CO2], but the increase is observed only in high light. In crop canopies, significant amounts of both light-limited and light-saturated photosynthesis contribute to total crop carbon gain. For canopies, the present average , found in C3 terrestrial plants is supra-optimal for the present atmospheric [CO2] of 370 µmol mol,1, but would be optimal for a CO2 concentration of around 200 µmol mol,1, a value close to the average of the last 400 000 years. Replacing the average Rubisco of terrestrial C3 plants with one having a lower and optimal , would increase canopy carbon gain by 3%. Because there are significant deviations from the strict inverse relationship between kcc and ,, the canopy model was also used to compare the rates of canopy photosynthesis for several Rubiscos with well-defined kinetic constants. These simulations suggest that very substantial increases (> 25%) in crop carbon gain could result if specific Rubiscos having either a higher , or higher kcc were successfully expressed in C3 plants. [source] Photosynthesis, light and nitrogen relationships in a young deciduous forest canopy under open-air CO2 enrichmentPLANT CELL & ENVIRONMENT, Issue 12 2001Y. Takeuchi Abstract Leaf photosynthesis (Ps), nitrogen (N) and light environment were measured on Populus tremuloides trees in a developing canopy under free-air CO2 enrichment in Wisconsin, USA. After 2 years of growth, the trees averaged 1·5 and 1·6 m tall under ambient and elevated CO2, respectively, at the beginning of the study period in 1999. They grew to 2·6 and 2·9 m, respectively, by the end of the 1999 growing season. Daily integrated photon flux from cloud-free days (PPFDday,sat) around the lowermost branches was 16·8 ± 0·8 and 8·7 ± 0·2% of values at the top for the ambient and elevated CO2 canopies, respectively. Elevated CO2 significantly decreased leaf N on a mass, but not on an area, basis. N per unit leaf area was related linearly to PPFDday,sat throughout the canopies, and elevated CO2 did not affect that relationship. Leaf Ps light-response curves responded differently to elevated CO2, depending upon canopy position. Elevated CO2 increased Pssat only in the upper (unshaded) canopy, whereas characteristics that would favour photosynthesis in shade were unaffected by elevated CO2. Consequently, estimated daily integrated Ps on cloud-free days (Psday,sat) was stimulated by elevated CO2 only in the upper canopy. Psday,sat of the lowermost branches was actually lower with elevated CO2 because of the darker light environment. The lack of CO2 stimulation at the mid- and lower canopy was probably related to significant down-regulation of photosynthetic capacity; there was no down-regulation of Ps in the upper canopy. The relationship between Psday,sat and leaf N indicated that N was not optimally allocated within the canopy in a manner that would maximize whole-canopy Ps or photosynthetic N use efficiency. Elevated CO2 had no effect on the optimization of canopy N allocation. [source] Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gainPLANT CELL & ENVIRONMENT, Issue 8 2001J. R. Evans Abstract Changes in specific leaf area (SLA, projected leaf area per unit leaf dry mass) and nitrogen partitioning between proteins within leaves occur during the acclimation of plants to their growth irradiance. In this paper, the relative importance of both of these changes in maximizing carbon gain is quantified. Photosynthesis, SLA and nitrogen partitioning within leaves was determined from 10 dicotyledonous C3 species grown in photon irradiances of 200 and 1000 µmol m,2 s,1. Photosynthetic rate per unit leaf area measured under the growth irradiance was, on average, three times higher for high-light-grown plants than for those grown under low light, and two times higher when measured near light saturation. However, light-saturated photosynthetic rate per unit leaf dry mass was unaltered by growth irradiance because low-light plants had double the SLA. Nitrogen concentrations per unit leaf mass were constant between the two light treatments, but plants grown in low light partitioned a larger fraction of leaf nitrogen into light harvesting. Leaf absorptance was curvilinearly related to chlorophyll content and independent of SLA. Daily photosynthesis per unit leaf dry mass under low-light conditions was much more responsive to changes in SLA than to nitrogen partitioning. Under high light, sensitivity to nitrogen partitioning increased, but changes in SLA were still more important. [source] Use of stomatal conductance and pre-dawn water potential to classify terroir for the grape variety KékfrankosAUSTRALIAN JOURNAL OF GRAPE AND WINE RESEARCH, Issue 1 2009Zs. ZSÓFI Abstract Background and Aims:, A 3-year study was carried out in order to evaluate the ecophysiology, yield and quality characteristics of Vitis vinifera L. cv. Kékfrankos (syn. Limberger) at Eger-Nagyeged hill (steep slope) and at Eger-K,lyuktet, (flat) vineyard sites located in the Eger wine region, Hungary. The aim of this paper was to analyse the effect of ,vintage' and ,terroir' on the seasonal changes of Kékfrankos ecophysiology and its possible relationship with yield and wine composition. Methods and Results:, Grapevine physiological responses (midday- and pre-dawn water potential, pressure,volume analysis and gas-exchange), growing stages, yield and wine composition of each vineyard were studied. Lower grapevine water supply was detected at Eger-Nagyeged hill in each season due to its steep slope and soil characteristics. Pressure-volume curves indicated that there was no osmotic adjustment in the leaves of this variety. Higher osmotic concentration was measured at turgor loss and full turgor in the leaves of the unstressed vineyard (Eger-K,lyuktet,) presumably due to higher photosynthetic activity. Differences in soil water content of the vineyards resulted in a slightly altered cell wall elasticity. Stomatal conductance, transpiration rate and photosynthetic production per unit leaf area were affected by water availability. Lower yield in Eger-Nagyeged hill was partly associated with decreased photosynthetic production of the canopy. Improved wine quality of Eger-Nagyeged hill was due to moderate water stress which induced higher concentration of anthocyanins and phenolics in the berries. The duration of the phenological stages was dependent on vintage temperature characteristics rather than on vineyard site. Conclusion:, There was a close relationship between environmental conditions, Kékfrankos gas-exchange, water relations, yield and wine composition. Water deficit plays an important role in creating a terroir effect, resulting in decreased yield, better sun exposure of leaves and clusters and thus higher concentration of phenolics and anthocyanins. Although quality is mainly influenced by vintage differences, vineyard characteristics are able to buffer unfavourable vintage effects even within a small wine region. Significance of the Study:, Stomatal conductance, pre-dawn water potential and climatic data may be reliable parameters for terroir classification, although variety,terroir interactions must always be considered. [source] |