Home About us Contact | |||
Unit Hydrograph (unit + hydrograph)
Selected AbstractsThe influence of elevation error on the morphometrics of channel networks extracted from DEMs and the implications for hydrological modellingHYDROLOGICAL PROCESSES, Issue 11 2008John B. Lindsay Abstract Stream network morphometrics have been used frequently in environmental applications and are embedded in several hydrological models. This is because channel network geometry partly controls the runoff response of a basin. Network indices are often measured from channels that are mapped from digital elevation models (DEMs) using automated procedures. Simulations were used in this paper to study the influence of elevation error on the reliability of estimates of several common morphometrics, including stream order, the bifurcation, length, area and slope ratios, stream magnitude, network diameter, the flood magnitude and timing parameters of the geomorphological instantaneous unit hydrograph (GIUH) and the network width function. DEMs of three UK basins, ranging from high to low relief, were used for the analyses. The findings showed that moderate elevation error (RMSE of 1·8 m) can result in significant uncertainty in DEM-mapped network morphometrics and that this uncertainty can be expressed in complex ways. For example, estimates of the bifurcation, length and area ratios and the flood magnitude and timing parameters of the GIUH each displayed multimodal frequency distributions, i.e. two or more estimated values were highly likely. Furthermore, these preferential estimates were wide ranging relative to the ranges typically observed for these indices. The wide-ranging estimates of the two GIUH parameters represented significant uncertainty in the shape of the unit hydrograph. Stream magnitude, network diameter and the network width function were found to be highly sensitive to elevation error because of the difficulty in mapping low-magnitude links. Uncertainties in the width function were found to increase with distance from outlet, implying that hydrological models that use network width contain greater uncertainty in the shape of the falling limb of the hydrograph. In light of these findings, care should be exercised when interpreting the results of analyses based on DEM-mapped stream networks. Copyright © 2007 John Wiley & Sons, Ltd. [source] Runoff and suspended sediment yields from an unpaved road segment, St John, US Virgin IslandsHYDROLOGICAL PROCESSES, Issue 1 2007Carlos E. Ramos-Scharrón Abstract Unpaved roads are believed to be the primary source of terrigenous sediments being delivered to marine ecosystems around the island of St John in the eastern Caribbean. The objectives of this study were to: (1) measure runoff and suspended sediment yields from a road segment; (2) develop and test two event-based runoff and sediment prediction models; and (3) compare the predicted sediment yields against measured values from an empirical road erosion model and from a sediment trap. The runoff models use the Green,Ampt infiltration equation to predict excess precipitation and then use either an empirically derived unit hydrograph or a kinematic wave to generate runoff hydrographs. Precipitation, runoff, and suspended sediment data were collected from a 230 m long, mostly unpaved road segment over an 8-month period. Only 3,5 mm of rainfall was sufficient to initiate runoff from the road surface. Both models simulated similar hydrographs. Model performance was poor for storms with less than 1 cm of rainfall, but improved for larger events. The largest source of error was the inability to predict initial infiltration rates. The two runoff models were coupled with empirical sediment rating curves, and the predicted sediment yields were approximately 0·11 kg per square meter of road surface per centimetre of precipitation. The sediment trap data indicated a road erosion rate of 0·27 kg m,2 cm,1. The difference in sediment production between these two methods can be attributed to the fact that the suspended sediment samples were predominantly sand and silt, whereas the sediment trap yielded mostly sand and gravel. The combination of these data sets yields a road surface erosion rate of 0·31 kg m,2 cm,1, or approximately 36 kg m,2 year,1. This is four orders of magnitude higher than the measured erosion rate from undisturbed hillslopes. The results confirm the importance of unpaved roads in altering runoff and erosion rates in a tropical setting, provide insights into the controlling processes, and provide guidance for predicting runoff and sediment yields at the road-segment scale. Copyright © 2006 John Wiley & Sons, Ltd. [source] Assessment of flooding in urbanized ungauged basins: a case study in the Upper Tiber area, ItalyHYDROLOGICAL PROCESSES, Issue 10 2005T. Moramarco Abstract The reliability of a procedure for investigation of flooding into an ungauged river reach close to an urban area is investigated. The approach is based on the application of a semi-distributed rainfall,runoff model for a gauged basin, including the flood-prone area, and that furnishes the inlet flow conditions for a two-dimensional hydraulic model, whose computational domain is the urban area. The flood event, which occurred in October 1998 in the Upper Tiber river basin and caused significant damage in the town of Pieve S. Stefano, was used to test the approach. The built-up area, often inundated, is included in the gauged basin of the Montedoglio dam (275 km2), for which the rainfall,runoff model was adapted and calibrated through three flood events without over-bank flow. With the selected set of parameters, the hydrological model was found reasonably accurate in simulating the discharge hydrograph of the three events, whereas the flood event of October 1998 was simulated poorly, with an error in peak discharge and time to peak of ,58% and 20%, respectively. This discrepancy was ascribed to the combined effect of the rainfall spatial variability and a partial obstruction of the bridge located in Pieve S. Stefano. In fact, taking account of the last hypothesis, the hydraulic model reproduced with a fair accuracy the observed flooded urban area. Moreover, incorporating into the hydrological model the flow resulting from a sudden cleaning of the obstruction, which was simulated by a ,shock-capturing' one-dimensional hydraulic model, the discharge hydrograph at the basin outlet was well represented if the rainfall was supposed to have occurred in the region near the main channel. This was simulated by reducing considerably the dynamic parameter, the lag time, of the instantaneous unit hydrograph for each homogeneous element into which the basin is divided. The error in peak discharge and time to peak decreased by a few percent. A sensitivity analysis of both the flooding volume involved in the shock wave and the lag time showed that this latter parameter requires a careful evaluation. Moreover, the analysis of the hydrograph peak prediction due to error in rainfall input showed that the error in peak discharge was lower than that of the same input error quantity. Therefore, the obtained results allowed us to support the hypothesis on the causes which triggered the complex event occurring in October 1998, and pointed out that the proposed procedure can be conveniently adopted for flood risk evaluation in ungauged river basins where a built-up area is located. The need for a more detailed analysis regarding the processes of runoff generation and flood routing is also highlighted. Copyright © 2005 John Wiley & Sons, Ltd. [source] A geomorphological explanation of the unit hydrograph conceptHYDROLOGICAL PROCESSES, Issue 4 2004C. Cudennec Abstract The water path from any point of a basin to the outlet through the self-similar river network was considered. This hydraulic path was split into components within the Strahler ordering scheme. For the entire basin, we assumed the probability density functions of the lengths of these components, reduced by the scaling factor, to be independent and isotropic. As with these assumptions, we propose a statistical physics reasoning (similar to Maxwell's reasoning) that considers a hydraulic length symbolic space, built on the self-similar lengths of the components. Theoretical expressions of the probability density functions of the hydraulic length and of the lengths of all the components were derived. These expressions are gamma laws expressed in terms of simple geomorphological parameters. We validated our theory with experimental observations from two French basins, which are different in terms of size and relief. From the comparisons, we discuss the relevance of the assumptions and show how a gamma law structure underlies the river network organization, but under the influence of a strong hierarchy constraint. These geomorphological results have been translated into travel time probability density functions, through the hydraulic linear hypothesis. This translation provides deterministic explanations of some famous a priori assumptions of the unit hydrograph and the geomorphological unit hydrograph theories, such as the gamma law general shape and the exponential distribution of residence time in Strahler states. Copyright © 2004 John Wiley & Sons, Ltd. [source] On morphometric properties of basins, scale effects and hydrological responseHYDROLOGICAL PROCESSES, Issue 1 2003Roger Moussa Abstract One of the important problems in hydrology is the quantitative description of river system structure and the identification of relationships between geomorphological properties and hydrological response. Digital elevation models (DEMs) generally are used to delineate the basin's limits and to extract the channel network considering pixels draining an area greater than a threshold area S. In this paper, new catchment shape descriptors, the geometric characteristics of an equivalent ellipse that has the same centre of gravity, the same principal inertia axes, the same area and the same ratio of minimal inertia moment to maximal inertia moment as the basin, are proposed. They are applied in order to compare and classify the structure of seven basins located in southern France. These descriptors were correlated to hydrological properties of the basins' responses such as the lag time and the maximum amplitude of a geomorphological unit hydrograph calculated at the basin outlet by routing an impulse function through the channel network using the diffusive wave model. Then, we analysed the effects of the threshold area S on the topological structure of the channel network and on the evolution of the source catchment's shape. Simple models based on empirical relationships between the threshold S and the morphometric properties were established and new catchment shape indexes, independent of the observation scale S, were defined. This methodology is useful for geomorphologists dealing with the shape of source basins and for hydrologists dealing with the problem of scale effects on basin topology and on relationships between the basin morphometric properties and the hydrological response. Copyright © 2002 John Wiley & Sons, Ltd. [source] Inverse Modeling Approach to Allogenic Karst System CharacterizationGROUND WATER, Issue 3 2009N. Dörfliger Allogenic karst systems function in a particular way that is influenced by the type of water infiltrating through river water losses, by karstification processes, and by water quality. Management of this system requires a good knowledge of its structure and functioning, for which a new methodology based on an inverse modeling approach appears to be well suited. This approach requires both spring and river inflow discharge measurements and a continuous record of chemical parameters in the river and at the spring. The inverse model calculates unit hydrographs and the impulse responses of fluxes from rainfall hydraulic head at the spring or rainfall flux data, the purpose of which is hydrograph separation. Hydrograph reconstruction is done using rainfall and river inflow data as model input and enables definition at each time step of the ratio of each component. Using chemical data, representing event and pre-event water, as input, it is possible to determine the origin of spring water (either fast flow through the epikarstic zone or slow flow through the saturated zone). This study made it possible to improve a conceptual model of allogenic karst system functioning. The methodology is used to study the Bas-Agly and the Cent Font karst systems, two allogenic karst systems in Southern France. [source] Development of design flood hydrographs using probability density functionsHYDROLOGICAL PROCESSES, Issue 4 2010Niranjan Pramanik Abstract Probability density functions (PDFs) are used to fit the shape of hydrographs and have been popularly used for the development of synthetic unit hydrographs by many hydrologists. Nevertheless, modelling the shapes of continuous stream flow hydrographs, which are probabilistic in nature, is rare. In the present study, a novel approach was followed to model the shape of stream flow hydrographs using PDF and subsequently to develop design flood hydrographs for various return periods. Four continuous PDFs, namely, two parameter Beta, Weibull, Gamma and Lognormal, were employed to fit the shape of the hydrographs of 22 years at a site of Brahmani River in eastern India. The shapes of the observed and PDF fitted hydrographs were compared and root mean square errors, error of peak discharge (EQP) and error of time to peak (ETP) were computed. The best-fitted shape and scale parameters of all PDFs were subjected to frequency analysis and the quartiles corresponding to 20-, 50-, 100- and 200-year were estimated. The estimated parameters of each return period were used to develop the flood hydrographs for 20-, 50-, 100- and 200-year return periods. The peak discharges of the developed design flood hydrographs were compared with the design discharges estimated from the frequency analysis of 22 years of annual peak discharges at that site. Lognormal-produced peak discharge was very close to the estimated design discharge in case of 20-year flood hydrograph. On the other hand, peak discharge obtained using the Weibull PDF had close agreement with the estimated design discharge obtained from frequency analysis in case of 50-, 100- and 200-year return periods. The ranking of the PDFs based on estimation of peak of design flood hydrograph for 50-, 100- and 200-year return periods was found to have the following order: Weibull > Beta > Lognormal > Gamma. Copyright © 2009 John Wiley & Sons, Ltd. [source] |