Uninfected Plants (uninfected + plant)

Distribution by Scientific Domains

Selected Abstracts

Stylet penetration behavior resulting in inoculation of a semipersistently transmitted closterovirus by the whitefly Bemisia argentifolii

D.D. Johnson
Abstract The electrical penetration graph (EPG) technique was used to determine what part of stylet penetration behavior by the whitefly vector, Bemisia argentifolii Bellows & Perring (Homoptera: Aleyrodidae), is lettuce chlorosis virus (LCV) inoculated in the host plant Malva parviflora L. LCV is a semipersistently-transmitted closterovirus. Since closteroviruses generally are found in the phloem of their plant hosts, this study tested the hypothesis that virus inoculation occurs during the phloem phase of stylet penetration behavior. Virus-exposed whiteflies were allowed to feed on uninfected host plants, and the whiteflies were divided into two experimental groups: group 1 attained phloem phase on the uninfected plants, and group 2 did not attain phloem phase. Two series of tests were conducted, one where whiteflies were manipulated so that the amount of time spent in non-phloem phase stylet penetration behaviors was similar between group 1 and group 2, and a second series of tests where whiteflies were manipulated so that the number of intracellular punctures made during stylet penetration was similar between group 1 and group 2. Both series of tests indicated that virus inoculation took place primarily during phloem phase. Considering only individual whiteflies shown to be capable of transmitting virus, 11 of 23 whiteflies (48%) in the phloem phase treatment successfully inoculated the virus whereas only one of 19 whiteflies (5%) in the non-phloem phase treatment successfully inoculated the virus (P= 0.00008). [source]

Neotyphodium endophyte infection affects the performance of tall fescue in temperate region Andisols

M. Hasinur Rahman
Abstract A pot experiment was conducted for 75 days to observe the effect of Neotyphodium coenophialum endophyte on three tall fescue (Festuca arundinacea Schreb.) ecotypes grown in two Andisols viz. Black Andisol and Red Andisol. Black Andisol with a naturally low content of P was high in other nutrients such as N, K, while Red Andisol, with a naturally high content of P, was low in other nutrients. Tiller number, plant height, chlorophyll content, shoot dry weight and agronomic efficiency of water use (WUEag) showed higher values in endophyte-infected (E+) plants than noninfected (E,) plants. Plants growing in Black Andisol performed better than those in Red Andisol. Among the three tall fescue ecotypes, one of them (ecotype Showa) had the best performance regardless of soils and endophyte infection. When considering the effect of endophyte infection in different soil conditions, higher WUEag was observed in endophyte-infected plants grown in Black Andisol. Endophyte infection significantly enhanced all plant parameters in Black Andisol but they were reduced in Red Andisol. Our results indicate that infected plants grew better in soil that was naturally low in P whereas uninfected plants had increased vegetative growth in soil that was naturally high in P. In nutrient poor soil with comparatively high P content (Red Andisol) the cost of endophyte infection may override its benefit. The presence of endophyte had a variable impact on plant performance and the effect of endophyte varied with ecotype of grass it infected into. [source]

Environmental stresses mediate endophyte,grass interactions in a boreal archipelago

Nora M. Saona
Summary 1.,Both evolutionary theory and empirical evidence from agricultural research support the view that asexual, vertically transmitted fungal endophytes are typically plant mutualists that develop high infection frequencies within host grass populations. In contrast, endophyte,grass interactions in natural ecosystems are more variable, spanning the range from mutualism to antagonism and comparatively little is known about their range of response to environmental stress. 2.,We examined patterns in endophyte prevalence and endophyte,grass interactions across nutrient and grazing (from Greylag and Canada geese) gradients in 15 sites with different soil moisture levels in 13 island populations of the widespread grass Festuca rubra in a boreal archipelago in Sweden. 3.,In the field, endophyte prevalence levels were generally low (range = 10,53%) compared with those reported from agricultural systems. Under mesic-moist conditions endophyte prevalence was constantly low (mean prevalence = 15%) and was not affected by grazing pressure or nutrient availability. In contrast, under conditions of drought, endophyte prevalence increased from 10% to 53% with increasing nutrient availability and increasing grazing pressure. 4.,In the field, we measured the production of flowering culms, as a proxy for host fitness, to determine how endophyte-infected plants differed from uninfected plants. At dry sites, endophyte infection did not affect flowering culm production. In contrast, at mesic-moist sites production of flowering culms in endophyte-infected plants increased with the covarying effects of increasing nutrient availability and grazing pressure, indicating that the interaction switched from antagonistic to mutualistic. 5.,A concurrent glasshouse experiment showed that in most situations, the host appears to incur some costs for harbouring endophytes. Uninfected grasses generally outperformed infected grasses (antagonistic interaction), while infected grasses outperformed uninfected grasses (mutualistic interaction) only in dry, nutrient-rich conditions. Nutrient and water addition affected tiller production, leaf number and leaf length differently, suggesting that tillers responded with different strategies. This emphasizes that several response variables are needed to evaluate the interaction. 6.,Synthesis. This study found complex patterns in endophyte prevalence that were not always correlated with culm production. These contrasting patterns suggest that the direction and strength of selection on infected plants is highly variable and depends upon a suite of interacting environmental variables that may fluctuate in the intensity of their impact, during the course of the host life cycle. [source]

Oxidative effects in uninfected tissue in leaves of French bean (Phaseolus vulgaris) containing soft rots caused by Botrytis cinerea

Ingo Muckenschnabel
Abstract Several markers of oxidative processes have been measured in leaves of Phaseolus vulgaris infected with Botrytis cinerea, with the specific objective of investigating changes induced by this necrotrophic pathogen in tissue remote from the lesion. There was a progressive decrease with time in the contents of ascorbic acid (AA) in apparently healthy tissues from infected plants and non-inoculated plants grown under identical high-humidity conditions (abiotically stressed controls), and for periods >48 h this decrease was greater in the infected plants. This decline in AA content was accompanied by an elevation in the intensity of the electron paramagnetic resonance (EPR) signal from adducts of the spin trap ,-(4-pyridyl-1-oxide)- N - t -butylnitrone (POBN), a destabilisation of the (monodehydro) ascorbate radical (Asc·) signal in the presence of POBN, and an increase in the ratio of Asc· to AA in samples studied in the absence of the spin trap. These results are consistent with a shift in redox status to more oxidising conditions in apparently healthy tissue of infected plants and indicate the prevalence of chemical processes that are distinctly different from those in uninfected plants. However, no differences in lipid peroxidation products or the single-peak free radical and Fe(III) (g = 4.27) EPR signals were observed between these tissues distant from the lesions and those from abiotically stressed controls. In addition, the pathogen-derived sesquiterpene toxin botrydial and a second Mn(II) EPR signal, both of which are associated with Botrytis infection, were not detected in these ,apparently healthy' tissues. Copyright © 2003 Society of Chemical Industry [source]

Coping with third parties in a nursery pollination mutualism: Hadena bicruris avoids oviposition on pathogen-infected, less rewarding Silene latifolia

Arjen Biere
Summary ,,In nursery pollination systems, pollinator offspring usually feed on pollinated fruits or seeds. Costs and benefits of the interaction for plant and pollinator, and hence its local outcome (antagonism,mutualism), can be affected by the presence of ,third-party' species. Infection of Silene latifolia plants by the fungus Microbotryum violaceum halts the development of fruits that provide shelter and food for larvae of the pollinating moth Hadena bicruris. We investigated whether the moth secures its benefit by selective oviposition on uninfected flowers. ,,Oviposition was recorded in eight natural populations as a function of plant infection status, local neighbourhood, plant and flower characteristics. ,,Oviposition was six times lower on flowers from infected than on those from uninfected plants. Oviposition decreased with decreasing flower and ovary size. Moths could use the latter to discriminate against diseased flowers. ,,Although moths show an adaptive oviposition response, they reduce the future potential of healthy hosts because they still visit infected plants for nectar, vectoring the disease, and they reduce any fitness advantage gained by disease-resistant plants through selective predation of those plants. [source]

Differential indirect effects of two plant viruses on an invasive and an indigenous whitefly vector: implications for competitive displacement

J. Liu
Abstract The role of vector,begomovirus,plant interactions in the widespread invasion by some members of the whitefly species complex Bemisia tabaci is poorly understood. The invasive B biotype of B. tabaci entered China in the late 1990s and had become the predominant or only biotype of the whitefly in many regions of the country by 2005,2006. Meanwhile epidemics of begomoviruses have been observed in many crops including tomato for which Tomato yellow leaf curl China virus (TYLCCNV) and Tomato yellow leaf curl virus (TYLCV) have been identified as two major disease-causing agents. Here, we conducted laboratory experiments to compare the performance of the invasive B and indigenous ZHJ1 whitefly biotypes on uninfected, TYLCCNV-infected and TYLCV-infected plants of tomato cv. Hezuo903, a cultivar that has been widely cultivated in many regions of China. The infection of tomato plants by either of the viruses had no or only marginal effects on the development, survival and fecundity of the B biotype. In contrast, survival and fecundity of the ZHJ1 biotype were significantly reduced on virus-infected plants compared to those on uninfected plants. Populations of the B biotype on uninfected and TYLCCNV-infected plants increased at similar rates, whereas population increase of the ZHJ1 biotype on TYLCCNV-infected plants was affected adversely. These asymmetric responses to virus infection of tomato plants between the B and ZHJ1 biotypes are likely to offer advantages to the B biotype in its invasion and displacement of the indigenous biotype. [source]