Unusual Observation (unusual + observation)

Distribution by Scientific Domains


Selected Abstracts


Manifestation of a Chiral Smectic C Phase in Diphenylbutadiene-Cored Bolaamphiphilic Sugars,

ADVANCED FUNCTIONAL MATERIALS, Issue 11 2008
Suresh Das
Abstract A series of symmetrical bolaamphiphiles possessing a diphenylbutadiene core and glucopyranoside head groups linked together by oligomethylene spacers, were synthesized and their thermotropic liquid crystalline properties investigated by polarized light optical microscopy, differential scanning calorimetry, X-ray diffraction and electro-optic switching. In spite of the presence of chiral centers, amphiphilic sugars in general do not exhibit macroscopic chirality and this phenomenon is attributed to strong hydrogen bonding between sugar head groups resulting in microphase-segregated layer like arrangements. In the present study all the molecules investigated exhibited the smectic C* phase, i.e., tilted lamellar phase with macroscopic chiral ordering of the molecules. The stability of this phase increased with increase in the length of the oligomethylene spacers. Whereas for derivatives with spacers containing ,4 methylene groups, the smectic C* phase was observed only in the cooling phase, for those containing spacers with ,5 methylene groups this phase was observed both in the heating and cooling cycles. The absorption and fluorescence spectra of these materials suggest that the unusual observation of macroscopic chirality in these bolaamphiphiles containing free hydroxyl groups could be attributed to self-aggregating behavior of the diphenylbutadiene core. [source]


Viscometric properties of viscosity index improvers in lubricant base oil over a wide temperature range.

LUBRICATION SCIENCE, Issue 2 2000
Part I: Group II base oil
Capillary viscometry has been employed to measure the viscosities of dilute polymer solutions over the temperature range -10 to 150 °C. A Group II base oil containing 95% saturates was used as solvent for an olefin copolymer (OCP), a hydrogenated diene copolymer (HDP), and a polymethacrylate (PMA). These three polymers represent the three major families of viscosity index (VI) improvers used nowadays in lubricant formulations. Intrinsic viscosities and Huggins' constants were also determined. The thickening effects of the olefin copolymer and the hydrogenated diene copolymer were found to be higher at low temperatures (e.g., 40 °C) than at higher ones (e.g., 100 °C), which phenomenon was attributed to stronger intermolecular hydrodynamic interactions at low temperatures, as indicated by the Huggins constants. For the hydrogenated diene copolymer and the polymethacrylate polymer, the viscosity increased abruptly when the temperature went below 10 °C. This unusual observation was attributed to the crystallisation of a small fraction of the base oil. Based on the intrinsic viscosity data, it was concluded that at temperatures between 10 and 150 °C, the polymer coil dimension remains a constant for the olefin copolymer and the hydrogenated diene copolymer VI improvers, but increases with increasing temperature for the polymethacrylate VI improver. [source]


Substrate and cofactor requirements for RNA editing of chloroplast transcripts in Arabidopsis in vitro

THE PLANT JOURNAL, Issue 1 2005
Carla E. Hegeman
Summary None of the macromolecular components of the chloroplast RNA editing apparatus has yet been identified. In order to facilitate biochemical purification and characterization of the chloroplast RNA editing apparatus, we have identified conditions suitable for production of chloroplast extracts from the model plant Arabidopsis that are capable of editing exogenous substrates produced by in vitro transcription. A simple poisoned primer extension assay readily quantified editing extent of mutated and wild-type substrates. Maximum editing efficiency typically varied from 10 to 40% with different chloroplast preparations. Substrates carrying as little as 47 nt surrounding the psbE editing site were as efficiently edited as longer substrates. Editing activity was stimulated when either ATP, CTP, or dCTP was provided to the extract, an unusual observation also recently seen with plant mitochondrial editing extracts. Editing was sensitive to a zinc chelator, also a characteristic of the mammalian APOBEC editing enzyme, which is a zinc-dependent cytidine deaminase. [source]


Complex responses to culture conditions in Pseudomonas syringae pv. tomato DC3000 continuous cultures: The role of iron in cell growth and virulence factor induction

BIOTECHNOLOGY & BIOENGINEERING, Issue 5 2010
Beum Jun Kim
Abstract The growth of a model plant pathogen, Pseudomonas syringae pv. tomato DC3000, was investigated using a chemostat culture system to examine environmentally regulated responses. Using minimal medium with iron as the limiting nutrient, four different types of responses were obtained in a customized continuous culture system: (1) stable steady state, (2) damped oscillation, (3) normal washout due to high dilution rates exceeding the maximum growth rate, and (4) washout at low dilution rates due to negative growth rates. The type of response was determined by a combination of initial cell mass and dilution rate. Stable steady states were obtained with dilution rates ranging from 0.059 to 0.086,h,1 with an initial cell mass of less than 0.6,OD600. Damped oscillations and negative growth rates are unusual observations for bacterial systems. We have observed these responses at values of initial cell mass of 0.9,OD600 or higher, or at low dilution rates (<0.05,h,1) irrespectively of initial cell mass. This response suggests complex dynamics including the possibility of multiple steady states. Iron, which was reported earlier as a growth limiting nutrient in a widely used minimal medium, enhances both growth and virulence factor induction in iron-supplemented cultures compared to unsupplemented controls. Intracellular iron concentration is correlated to the early induction (6,h) of virulence factors in both batch and chemostat cultures. A reduction in aconitase activity (a TCA cycle enzyme) and ATP levels in iron-limited chemostat cultures was observed compared to iron-supplemented chemostat cultures, indicating that iron affects central metabolic pathways. We conclude that DC3000 cultures are particularly dependent on the environment and iron is likely a key nutrient in determining physiology. Biotechnol. Bioeng. 2010;105: 955,964. © 2009 Wiley Periodicals, Inc. [source]