Home About us Contact | |||
Unfolding Transition (unfolding + transition)
Selected AbstractsNeuroserpin Portland (Ser52Arg) is trapped as an inactive intermediate that rapidly forms polymersFEBS JOURNAL, Issue 16 2004Implications for the epilepsy seen in the dementia FENIB The dementia familial encephalopathy with neuroserpin inclusion bodies (FENIB) is caused by point mutations in the neuroserpin gene. We have shown a correlation between the predicted effect of the mutation and the number of intracerebral inclusions, and an inverse relationship with the age of onset of disease. Our previous work has shown that the intraneuronal inclusions in FENIB result from the sequential interaction between the reactive centre loop of one neuroserpin molecule with ,-sheet A of the next. We show here that neuroserpin Portland (Ser52Arg), which causes a severe form of FENIB, also forms loop-sheet polymers but at a faster rate, in keeping with the more severe clinical phenotype. The Portland mutant has a normal unfolding transition in urea and a normal melting temperature but is inactive as a proteinase inhibitor. This results in part from the reactive loop being in a less accessible conformation to bind to the target enzyme, tissue plasminogen activator. These results, with those of the CD analysis, are in keeping with the reactive centre loop of neuroserpin Portland being partially inserted into ,-sheet A to adopt a conformation similar to an intermediate on the polymerization pathway. Our data provide an explanation for the number of inclusions and the severity of dementia in FENIB associated with neuroserpin Portland. Moreover the inactivity of the mutant may result in uncontrolled activity of tissue plasminogen activator, and so explain the epileptic seizures seen in individuals with more severe forms of the disease. [source] Pressure-exploration of the 33-kDa protein from the spinach photosystem II particleFEBS JOURNAL, Issue 9 2001Kangcheng Ruan The 33-kDa protein isolated from the spinach photosystem II particle is an ideal model to explore high-pressure protein-unfolding. The protein has a very low free energy as previously reported by chemical unfolding studies, suggesting that it must be easy to modulate its unfolding transition by rather mild pressure. Moreover, the protein molecule consists of only one tryptophan residue (Trp241) and eight tyrosine residues, which can be conveniently used to probe the protein conformation and structural changes under pressure using either fluorescence spectroscopy or fourth derivative UV absorbance spectroscopy. The different experimental methods used in the present study indicate that at 20 °C and pH 6, the 33-kDa protein shows a reversible two-state unfolding transition from atmospheric pressure to about 180 MPa. This value is much lower than those found for the unfolding of most proteins studied so far. The unfolding transition induces a large red shift of the maximum fluorescence emission of 34 nm (from 316 nm to 350 nm). The change in standard free energy (,Go) and in volume (,V) for the transition at pH 6.0 and 20 °C are ,14.6 kJ·mol,1 and ,120 mL·mol,1, respectively, in which the ,Go value is consistent with that obtained by chemical denaturation. We found that pressure-induced protein unfolding is promoted by elevated temperatures, which seem largely attributed to the decrease in the absolute value of ,Go (only a minor variation was observed for the ,V value). However, the promotion of the unfolding by alkaline pH seems mainly related to the increase in ,V without any significant changes in ,Go. It was also found that NaCl significantly protects the protein from pressure-induced unfolding. In the presence of 1 m NaCl, the pressure needed to induce the half-unfold of the protein is shifted to a higher value (shift of 75 MPa) in comparison with that observed without NaCl. Interestingly, in the presence of NaCl, the value of ,V is significantly reduced whilst that of ,Go remains as before. The unfolding-refolding kinetics of the protein has also been studied by pressure-jump, in which it was revealed that both reactions are a two-state transition process with a relatively slow relaxation time of about 102 s. [source] Urea Unfolding of Opsin in Phospholipid Bicelles,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2009Craig McKibbin Opsin is the unstable apo-protein of the light-activated G protein-coupled receptor rhodopsin. We investigated the stability of bovine opsin, solubilized in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/detergent bicelles, against urea-induced unfolding. A single irreversible protein unfolding transition was observed from changes in intrinsic tryptophan fluorescence and far-UV circular dichroism. This unfolding transition correlated with loss of protein activity. Changes in tertiary structure, as indicated by fluorescence measurements, were concomitant with an approximate 50% reduction in ,-helical content of opsin, indicating that global unfolding had been induced by urea. The urea concentration at the midpoint of unfolding was dependent on the lipid/detergent environment, occurring at approximately 1.2 m urea in DMPC/1,2-dihexanoyl-sn-glycero-3-phosphocholine bicelles, while being significantly stabilized to approximately 3.5 m urea in DMPC/3-[(cholamidopropyl)dimethylammonio]-1-propanesulfonate bicelles. These findings demonstrate that interactions with the surrounding lipids and detergent are highly influential in the unfolding of membrane protein structure. The urea/bicelle system offers the possibility for a more detailed understanding of the structural changes that take place upon irreversible unfolding of opsin. [source] Integrated biophysical studies implicate partial unfolding of NBD1 of CFTR in the molecular pathogenesis of F508del cystic fibrosisPROTEIN SCIENCE, Issue 10 2010Chi Wang Abstract The lethal genetic disease cystic fibrosis is caused predominantly by in-frame deletion of phenylalanine 508 in the cystic fibrosis transmembrane conductance regulator (CFTR). F508 is located in the first nucleotide-binding domain (NBD1) of CFTR, which functions as an ATP-gated chloride channel on the cell surface. The F508del mutation blocks CFTR export to the surface due to aberrant retention in the endoplasmic reticulum. While it was assumed that F508del interferes with NBD1 folding, biophysical studies of purified NBD1 have given conflicting results concerning the mutation's influence on domain folding and stability. We have conducted isothermal (this paper) and thermal (accompanying paper) denaturation studies of human NBD1 using a variety of biophysical techniques, including simultaneous circular dichroism, intrinsic fluorescence, and static light-scattering measurements. These studies show that, in the absence of ATP, NBD1 unfolds via two sequential conformational transitions. The first, which is strongly influenced by F508del, involves partial unfolding and leads to aggregation accompanied by an increase in tryptophan fluorescence. The second, which is not significantly influenced by F508del, involves full unfolding of NBD1. Mg-ATP binding delays the first transition, thereby offsetting the effect of F508del on domain stability. Evidence suggests that the initial partial unfolding transition is partially responsible for the poor in vitro solubility of human NBD1. Second-site mutations that increase the solubility of isolated F508del-NBD1 in vitro and suppress the trafficking defect of intact F508del-CFTR in vivo also stabilize the protein against this transition, supporting the hypothesize that it is responsible for the pathological trafficking of F508del-CFTR. [source] Detecting equilibrium cytochrome c folding intermediates by electrospray ionisation mass spectrometry: Two partially folded forms populate the molten-globule statePROTEIN SCIENCE, Issue 3 2002Rita Grandori Abstract Nanoelectrospray ionization mass spectrometry (nano-ESI-MS) is applied to the characterization of ferric cytochromec (cytc) conformational states under different solvent conditions. The methanol-induced molten-globule state in the pH range 2.6,3.0 is found to be populated by two distinct, partially folded conformers IA and IB. The more compact intermediate IB resembles that induced by glycerol in acid-unfolded cytc. The less compact one, IA, also can be induced by destabilization of the native structure by trifluoroethanol. IA and IB can be detected, in the absence of additives, around the midpoint of the acid-induced unfolding transition, providing direct evidence for involvement of equilibrium folding intermediates in cytc conformational transitions at low pH. This study shows that mass spectrometry can contribute to the characterization of molten-globule states of proteins by detection of distinct, although poorly populated, conformations involved in a dynamic equilibrium. [source] Travelling wave ion mobility mass spectrometry studies of protein structure: biological significance and comparison with X-ray crystallography and nuclear magnetic resonance spectroscopy measurementsRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 20 2008Charlotte A. Scarff The three-dimensional conformation of a protein is central to its biological function. The characterisation of aspects of three-dimensional protein structure by mass spectrometry is an area of much interest as the gas-phase conformation, in many instances, can be related to that of the solution phase. Travelling wave ion mobility mass spectrometry (TWIMS) was used to investigate the biological significance of gas-phase protein structure. Protein standards were analysed by TWIMS under denaturing and near-physiological solvent conditions and cross-sections estimated for the charge states observed. Estimates of collision cross-sections were obtained with reference to known standards with published cross-sections. Estimated cross-sections were compared with values from published X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy structures. The cross-section measured by ion mobility mass spectrometry varies with charge state, allowing the unfolding transition of proteins in the gas phase to be studied. Cross-sections estimated experimentally for proteins studied, for charge states most indicative of native structure, are in good agreement with measurements calculated from published X-ray and NMR structures. The relative stability of gas-phase structures has been investigated, for the proteins studied, based on their change in cross-section with increase in charge. These results illustrate that the TWIMS approach can provide data on three-dimensional protein structures of biological relevance. Copyright © 2008 John Wiley & Sons, Ltd. [source] LpxA: A natural nanotube,BIOPOLYMERS, Issue 10 2010Atanu Das Abstract UDP-N-acetylglucosamine 3-O-acyltransferase is a protein with a left-handed parallel ,-helix, which is a natural nanotube. They are associated with unusual high stability. To identify the reason behind the structural stability of ,-helical nanotubular structure, we have performed a total of 4 ,s molecular dynamics simulations of the protein in implicit solvent at four different temperatures and monitored the unfolding pathway. The correlation in movement between different regions of the nanotubular structure has been identified from the dynamical cross-correlation map and contribution of some specific residues towards unfolding transition has been identified by principal component analysis. Difference in stability of the three loop regions has also been characterized. Construction of the unfolding conformational energy landscape identifies the probable intermediates that can appear in the unfolding pathway of the protein. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 845,853, 2010. [source] A Designed Well-Folded Monomeric Four-Helix Bundle Protein Prepared by Fmoc Solid-Phase Peptide Synthesis and Native Chemical Ligation,CHEMISTRY - A EUROPEAN JOURNAL, Issue 5 2006Gunnar T. Dolphin Dr. Abstract The design and total chemical synthesis of a monomeric native-like four-helix bundle protein is presented. The designed protein, GTD-Lig, consists of 90 amino acids and is based on the dimeric structure of the de novo designed helix-loop-helix GTD-43. GTD-Lig was prepared by the native chemical ligation strategy and the fragments (45 residues long) were synthesized by applying standard fluorenylmethoxycarbonyl (Fmoc) chemistry. The required peptide,thioester fragment was prepared by anchoring the free ,-carboxy group of Fmoc-Glu-allyl to the solid phase. After chain elongation the allyl moiety was orthogonally removed and the resulting carboxy group was functionalized with a glycine,thioester followed by standard trifluoroacetic acid (TFA) cleavage to produce the unprotected peptide,thioester. The structure of the synthetic protein was examined by far- and near-UV circular dichroism (CD), sedimentation equilibrium ultracentrifugation, and NMR and fluorescence spectroscopy. The spectroscopic methods show a highly helical and native-like monomeric protein consistent with the design. Heat-induced unfolding was studied by tryptophan absorbance and far-UV CD. The thermal unfolding of GTD-Lig occurs in two steps; a cooperative transition from the native state to an intermediate state and thereafter by noncooperative melting to the unfolded state. The intermediate exhibits the properties of a molten globule such as a retained native secondary structure and a compact hydrophobic core. The thermodynamics of GuHCl-induced unfolding were evaluated by far-UV CD monitoring and the unfolding exhibited a cooperative transition that is well-fitted by a two-state mechanism from the native to the unfolded state. GTD-Lig clearly shows the characteristics of a native protein with a well-defined structure and typical unfolding transitions. The design and synthesis presented herein is of general applicability for the construction of large monomeric proteins. [source] |