Ultrahigh-pressure Metamorphism (ultrahigh-pressure + metamorphism)

Distribution by Scientific Domains


Selected Abstracts


Ultrahigh-pressure metamorphism and exhumation of garnet peridotite in Pohorje, Eastern Alps

JOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2006
M. JANÁK
Abstract New evidence for ultrahigh-pressure metamorphism (UHPM) in the Eastern Alps is reported from garnet-bearing ultramafic rocks from the Pohorje Mountains in Slovenia. The garnet peridotites are closely associated with UHP kyanite eclogites. These rocks belong to the Lower Central Austroalpine basement unit of the Eastern Alps, exposed in the proximity of the Periadriatic fault. Ultramafic rocks have experienced a complex metamorphic history. On the basis of petrochemical data, garnet peridotites could have been derived from depleted mantle rocks that were subsequently metasomatized by melts and/or fluids either in the plagioclase-peridotite or the spinel-peridotite field. At least four stages of recrystallization have been identified in the garnet peridotites based on an analysis of reaction textures and mineral compositions. Stage I was most probably a spinel peridotite stage, as inferred from the presence of chromian spinel and aluminous pyroxenes. Stage II is a UHPM stage defined by the assemblage garnet + olivine + low-Al orthopyroxene + clinopyroxene + Cr-spinel. Garnet formed as exsolutions from clinopyroxene, coronas around Cr-spinel, and porphyroblasts. Stage III is a decompression stage, manifested by the formation of kelyphitic rims of high-Al orthopyroxene, aluminous spinel, diopside and pargasitic hornblende replacing garnet. Stage IV is represented by the formation of tremolitic amphibole, chlorite, serpentine and talc. Geothermobarometric calculations using (i) garnet-olivine and garnet-orthopyroxene Fe-Mg exchange thermometers and (ii) the Al-in-orthopyroxene barometer indicate that the peak of metamorphism (stage II) occurred at conditions of around 900 °C and 4 GPa. These results suggest that garnet peridotites in the Pohorje Mountains experienced UHPM during the Cretaceous orogeny. We propose that UHPM resulted from deep subduction of continental crust, which incorporated mantle peridotites from the upper plate, in an intracontinental subduction zone. Sinking of the overlying mantle and lower crustal wedge into the asthenosphere (slab extraction) caused the main stage of unroofing of the UHP rocks during the Upper Cretaceous. Final exhumation was achieved by Miocene extensional core complex formation. [source]


Diamond growth during ultrahigh-pressure metamorphism of the Kokchetav Massif, northern Kazakhstan

ISLAND ARC, Issue 3 2000
K. De Corte
Abstract Characteristic features of in situ diamonds can be used to retrace diamond formation during ultrahigh pressure (UHP) metamorphism of the Kokchetav Massif, Kazakhstan. These features include the nitrogen aggregation state in diamond, dissolution features observed on diamond surfaces, and the carbon and nitrogen isotopic composition of the diamonds. The minerals in which the diamonds are included provide additional information and support the view that at least some of the Kokchetav microdiamonds are the products of prograde or peak UHP metamorphism. The coexistence of diamond and graphite is evaluated within this framework. [source]


Ultrahigh-pressure metamorphism and exhumation of garnet peridotite in Pohorje, Eastern Alps

JOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2006
M. JANÁK
Abstract New evidence for ultrahigh-pressure metamorphism (UHPM) in the Eastern Alps is reported from garnet-bearing ultramafic rocks from the Pohorje Mountains in Slovenia. The garnet peridotites are closely associated with UHP kyanite eclogites. These rocks belong to the Lower Central Austroalpine basement unit of the Eastern Alps, exposed in the proximity of the Periadriatic fault. Ultramafic rocks have experienced a complex metamorphic history. On the basis of petrochemical data, garnet peridotites could have been derived from depleted mantle rocks that were subsequently metasomatized by melts and/or fluids either in the plagioclase-peridotite or the spinel-peridotite field. At least four stages of recrystallization have been identified in the garnet peridotites based on an analysis of reaction textures and mineral compositions. Stage I was most probably a spinel peridotite stage, as inferred from the presence of chromian spinel and aluminous pyroxenes. Stage II is a UHPM stage defined by the assemblage garnet + olivine + low-Al orthopyroxene + clinopyroxene + Cr-spinel. Garnet formed as exsolutions from clinopyroxene, coronas around Cr-spinel, and porphyroblasts. Stage III is a decompression stage, manifested by the formation of kelyphitic rims of high-Al orthopyroxene, aluminous spinel, diopside and pargasitic hornblende replacing garnet. Stage IV is represented by the formation of tremolitic amphibole, chlorite, serpentine and talc. Geothermobarometric calculations using (i) garnet-olivine and garnet-orthopyroxene Fe-Mg exchange thermometers and (ii) the Al-in-orthopyroxene barometer indicate that the peak of metamorphism (stage II) occurred at conditions of around 900 °C and 4 GPa. These results suggest that garnet peridotites in the Pohorje Mountains experienced UHPM during the Cretaceous orogeny. We propose that UHPM resulted from deep subduction of continental crust, which incorporated mantle peridotites from the upper plate, in an intracontinental subduction zone. Sinking of the overlying mantle and lower crustal wedge into the asthenosphere (slab extraction) caused the main stage of unroofing of the UHP rocks during the Upper Cretaceous. Final exhumation was achieved by Miocene extensional core complex formation. [source]


Unusual Hf contents in metamorphic zircon from coesite-bearing eclogites of the Dabie Mountains, east-central China: implications for the dating of ultrahigh-pressure metamorphism

JOURNAL OF METAMORPHIC GEOLOGY, Issue 7 2004
X. Wang
Abstract Metamorphic zircon from coesite-bearing eclogites in the Dabie Mountains encloses high- P phases, and may have formed at the peak of ultrahigh-pressure (UHP) metamorphism. Morphologically, the metamorphic zircon typically occurs as small, multi-faceted, near-spherical grains with homogeneous internal structure and weak backscattered electron (BSE) luminescence. Geochemically, it is characterized by extremely high and relatively constant contents of hafnium (Hf) and very low contents of Y, U and Th, reflecting the contraction of the zircon lattice under the UHP conditions. High contents of Hf may be characteristic of zircon formed during UHP metamorphism, which has important consequences for interpretation of geochronological results. We propose that the metamorphic zircon extremely enriched in Hf may be used to date the peak of UHP metamorphism that produced the coesite-bearing eclogites in the Dabie Mountains, and potentially in other UHP terranes. [source]


High Pressure Response of Rutile Polymorphs and Its Significance for Indicating the Subduction Depth of Continental Crust

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2008
MENG Dawei
Abstract: ,-PbO2 -type TiO2 (TiO2 -II) is an important index mineral for ultrahigh-pressure metamorphism. After the discovery of a natural high-pressure phase of titanium oxide with ,-PbO2 -structure in omphacite from coesite-bearing eclogite at Shima in the Dabie Mountains, China, a nano-scale (<2 nm) ,-PbO2 -type TiO2 has been identified through electron diffraction and high-resolution transmission electron microscopy in coesite-bearing jadeite quartzite at Shuanghe in the Dabie Mountains. The crystal structure is orthorhombic with lattice parameters a = 4.58times10,1 nm, b = 5.42times10,1 nm, c = 4.96times10,1 nm and space group Pbcn. The analysis results reveal that rutile {011}R twin interface is a basic structural unit of ,-PbO2 -type TiO2. Nucleation of ,-PbO2 -type TiO2 lamellae is caused by the displacement of one half of the titanium cations within the {011}R twin slab. This displacement reduces the Ti-O-Ti distance and is favored by high pressure. The identification of ,-PbO2 -type TiO2 in coesite-bearing jadeite quartzite from Shuanghe, Dabie Mountains, provides a new and powerful evidence of ultrahigh-pressure metamorphism at 4,7 GPa, 850°C-900°C, and implies a burial of continental crustal rocks to 130,200 kilometers depth or deeper. The ,-PbO2 -type TiO2 may be a useful indicator of the pressure and temperature in the diamond stability field. [source]