UL-94 Test (ul-94 + test)

Distribution by Scientific Domains


Selected Abstracts


Preparation and flame retardancy of 2-EHA/n -BA acrylic PSA containing single and combined flame retardants

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010
Eun-Young Park
Abstract UV curable acrylic PSAs (pressure-sensitive adhesives) were modified with organic and inorganic flame retardants to improve flame retardancy of PSAs minimize the sacrifice of adhesion properties. The flame retardancy (UL-94 test) of acrylic PSAs were enhanced by the addition of 5,30 wt % of an organic flame retardant such as TCEP (Tris(2-chloroethyl)phosphate), PBPE (pentabromophenyl ether), and TBBPA(3,3,5,5,-tetrabromobisphenol A). Especially, TBBPA is the best flame retardant for acrylic PSAs when it works alone. However, PSAs compounded with aluminum trihydroxide (Al(OH)3) showed a little reduction in burning time up to 30 wt %. An apparent synergic effect was observed only for an acrylic PSAs with a combination of TCEP and PBPE flame retardants. The addition of flame retardants brought a no significant effect on curing even in high amount. It was surmised that the miscibility between PSAs and flame retardant was closely related with flame retardancy and adhesion properties of acrylic PSAs. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


Synthesis of a magnesium/aluminum/iron layered double hydroxide and its flammability characteristics in halogen-free, flame-retardant ethylene/vinyl acetate copolymer composites

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2008
Chuan-Mei Jiao
Abstract Mg,Al,Fe ternary hydrotalcites were synthesized by a coprecipitation method and characterized with powder X-ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The flame-retardant effects of Mg/Al,CO3 layered double hydroxides (LDHs) and Mg/Al/Fe,CO3 LDHs in an ethylene/vinyl acetate copolymer (EVA) were studied with the limited oxygen index (LOI), the UL-94 test, and the cone calorimeter test (CCT), and the thermal degradation behavior of the composites was examined by thermogravimetric analysis. The results showed that the LOI values of the EVA/(Mg/Al/Fe,CO3 LDH) composites were basically higher than those of the EVA/(Mg/Al,CO3 LDH) composites at the same additive level. In the UL-94 test, there was no rating for the EVA/(Mg/Al,CO3 LDH) composite at the 50% additive level, and a dripping phenomenon occurred. However, the EVA/(Mg/Al/Fe,CO3 LDH) composites at the same loading level of LDHs containing a suitable amount of Fe3+ ion reached the V-0 rating, the dripping phenomenon disappearing. The CCTs indicated that the heat release rate (HRR) of the EVA composites with Mg/Al/Fe,CO3 LDHs containing a suitable amount of Fe3+ decreased greatly in comparison with that of the composites with Mg/Al,CO3 LDHs. The introduction of a given amount of Fe3+ ion into Mg/Al,CO3 LDHs resulted in an increase in the LOI, a decrease in the HRR, and the achievement of the UL-94 V-0 rating. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


Synergistic Effect of the Charring Agent on the Thermal and Flame Retardant Properties of Polyethylene

MACROMOLECULAR MATERIALS & ENGINEERING, Issue 2 2004
Xiao-Ping Hu
Abstract Summary: A new charring agent (CA), a derivative of triazines, was synthesized. The flame retardancy and thermal behavior of a new intumescent flame-retardant (IFR) system for PE (PE-IFR) were investigated by limited oxygen index (LOI), UL-94 test, thermogravimetric analysis (TGA), and FTIR spectroscopy. The TG curves shows that the amount of residue of IFR-PE system are largely increased compared to those of PE at temperatures ranging from 350 to 700,°C. The new PE-IFR system can apparently reduce the amount of decomposing products at higher temperatures and promotes the formation of carbonaceous charred layers. It showed a distinct synergistic flame retardant effect (SE) between nitrogen and phosphorus. The flame retardant PE composition was optimized to achieve a LOI value of 31.2 and UL-94 V-0 performance with the synthesized charring agent, ammonium polyphosphate (APP). TG curves of PE, APP, CA, and different PE/CA/APP systems. [source]


Synergistic effects of , -cyclodextrin containing silicone oligomer on intumescent flame retardant polypropylene system

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 10 2010
Huanfeng Wang
Abstract The effects of , -cyclodextrin containing silicone oligomer(CDS), as a synergistic agent, on the flame retardancy and mechanical properties of intumescent flame retardant polypropylene composites were studied by adding different amounts of CDS in intumescent flame retardants. The limiting oxygen index (LOI), UL-94 test, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were utilized to evaluate the synergistic effects of CDS in the composites. It was found that after a little amount of CDS partially replaced a charring-foaming agent (CFA) in IFR, LOI values of the composites were enhanced and they obtained a UL-94 V-0 rating. IFR system containing 6.25wt% CDS presented the best flame retardancy in PP. The experimental results obtained from LOI and UL-94, TGA, SEM, and mechanical properties indicated that the combination of CDS and CFA presents synergistic effects in flame retardancy, char formation, and mechanical properties of the composites. This is probably due to different structures of polyhydroxyl macromolecules (CDS and CFA), the existence of dimethyl silicone group in CDS, and the toughness of epoxy silicon chain in CDS. SEM results proved that the interfacial compatibility between IFR and PP was improved by CDS. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Microencapsulated ammonium polyphosphate with polyurethane shell: preparation, characterization, and its flame retardance in polyurethane

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 6 2010
Jianxiong Ni
Abstract A series of polyurethane (PU) microencapsulated ammonium polyphosphate (MCAPP) were prepared by in situ polymerization from toluene-2,4-diisocyanate (TDI), polyethylene glycol (PEG), and pentaerythtritol (PER). And the structure was characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Then it chose the optimal PEG constituent to design microcapsule from scanning electron microscopy (SEM) and water solubility test. The combustion and thermal degradation behaviors of PU blended APP or MCAPP were investigated by thermogravimetric analysis (TGA), UL-94 test, and microcombustion calorimetry. The results showed that the PU/MCAPP had better thermal stability and flame retardance, due to the stable char forming by APP and PU shell. Moreover, the water resistance of flame retarded PU composite was greatly improved. Copyright © 2009 John Wiley & Sons, Ltd. [source]


A new intumescent flame-retardant: preparation, surface modification, and its application in polypropylene

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 8 2008
Xingyi Wang
Abstract Melamine salt of tripentaerythriol phosphate (MTP), as a new intumescent flame-retardant, was prepared from tripentaerythritol (TPE), polyphosphoric acid, phosphoric pentoxide, and melamine, and then incorporated into polypropylene (PP) to obtain flame-retarded PP-MTP. FT-IR analysis showed that MTP was in the form of cage structure. The flammability, combustion behavior, and thermal degradation and stability of flame-retarded PP were characterized by using LOI, UL-94 test, cone calorimetry, and TGA, respectively. By SEM, the char structure of PP-MTP was analyzed. XRD diffraction tests showed that PP-matrix of PP-MTP presented better crystallized phases, when MTP was modified by methyl hydrogen siloxane. The relations of the dispersion of MTP in PP matrix to the compatibility between PP and MTP, and to the flame retardancy were discussed. Copyright © 2008 John Wiley & Sons, Ltd. [source]


A novel thermotropic liquid crystalline copolyester containing phosphorus and aromatic ether moity toward high flame retardancy and low mesophase temperature

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 5 2010
Xiang-Cheng Bian
Abstract A series of thermotropic liquid crystalline polyesters containing phosphorus and aromatic ether groups (TLCP-AEs) were synthesized from p -acetoxybenzoic acid (p -ABA), terephthalic acid (TPA), 4,4,-oxybis(benzoic acid) (OBBA), and acetylated 2-(6-oxid-6H-dibenz(c,e) (1,2) oxaphosphorin 6-yl) 1,4-benzenediol (DOPO-AHQ). The chemical structure and the properties of TLCP-AEs were characterized by Fourier-transform spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), thermogravimetry analysis (TGA), scanning electronic microscopy (SEM), polarizing optical microscopy (POM), limiting oxygen index, and UL-94 tests, respectively. The results showed that TLCP-AEs had low and broad mesophase temperatures (230,400 °C). TLCP-AEs also showed excellent thermal stability; their 5%-weight-loss temperatures were above 440 °C and the char yields at 700 °C were higher than 45 wt %. All TLCP-AE polyesters exhibited high flame retardancy with a LOI value of higher than 70 and UL-94 V-0 rating. The SEM observation revealed that TLCP-AEs had good fibrillation ability. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1182,1189, 2010 [source]