Home About us Contact | |||
UVA Radiation (uva + radiation)
Selected AbstractsProtective effects of quercetin on ultraviolet A light-induced oxidative stress in the blood of ratJOURNAL OF APPLIED TOXICOLOGY, Issue 5 2002Ahmet Kahraman Abstract The oxidative effects of ultraviolet A (UVA) light (320,400 nm) and the antioxidant effects of quercetin were examined in rat blood. For this purpose, rats were divided into three groups: control, ultraviolet (UV) and ultraviolet + quercetin (UV + Q). The UV and UV + Q groups were irradiated for 4 h a day with UVA light (1.25 mW cm2) during periods of 3, 6 and 9 days. Quercetin (50 mg kg,1 body wt.) was administered intraperitoneally in the UV + Q group rats before irradiation periods. Blood was taken 3, 6 and 9 days post-treatment. Plasma malondialdehyde (MDA) levels significantly increased after 9 days of daily exposure to UVA. Whole blood glutathione (GSH) levels significantly declined after 3,9 days of irradiation. Glutathione peroxidase activity on days 6 and 9 and glutathione reductase activities on days 3, 6 and 9 post-irradiation were diminished significantly. Superoxide dismutase and catalase activities decreased significantly 3,9 days post-irradiation. The administration of quercetin before the 9-day period of irradiation significantly reduced the increase in plasma MDA value. Whole blood GSH levels significantly decreased with the administration of quercetin on all days. Quercetin significantly increased antioxidant enzymes diminished by UVA irradiation. Exposure of rats to UVA light leads to oxidative stress, reflected by increased MDA and reduced antioxidant enzyme levels. The administration of quercetin appears to be a useful approach to reduce the damage produced by UVA radiation. Copyright © 2002 John Wiley & Sons, Ltd. [source] Photoprotection of bacterial-derived melanin against ultraviolet A,induced cell death and its potential application as an active sunscreenJOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY & VENEREOLOGY, Issue 7 2008J Geng Abstract Background, The increase in the incidence of non-melanoma skin tumours, photoaging, and immunosuppression demand for more effective sunscreen on ultraviolet A (UVA) irradiation. Objectives, The aim of the study is to evaluate the photoprotective effects of a bacterial-derived melanin against UVA-induced damages in vitro and in vivo. Methods, Human fibroblasts were used to assess the role of the bacterial-derived melanin on cell viability against UVA. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and nuclear morphology were employed to evaluate the photoprotection at the cellular level. Fluorometric assays were performed to detect the formation of reactive oxygen species (ROS) in the cells. Evaluations of the bacterial-derived melanin as a sunscreen were measured by transmission test and persistent pigment darkening on human skin. Results, Bacterial-derived melanin efficiently scavenged ROS in the fibroblasts after UVA irradiation. The cell viability of xeroderma pigmentosum (XP) fibroblast treated with varied doses of melanin increased dramatically in comparison with untreated control and the treated XP fibroblasts became more resistant to UVA-induced apoptosis than normal fibroblasts. Although the relative transmission didn't change too much with different concentration of bacterial-derived melanin, this melanin could keep UVA-irradiated skin from pigment darkening and act as an active sunscreen on skin. Conclusions, The bacterial-derived melanin provided significant protection to fibroblast cell and human skin against the UVA radiation. It has the potential to be developed as an active sunscreen for the patients with photosensitivity skin to sun exposure. [source] Detection and Prevention of Ocular Phototoxicity of Ciprofloxacin and Other Fluoroquinolone Antibiotics,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2010Baozhong Zhao Fluoroquinolone (FLQ) drugs are a potent family of antibiotics used to treat infections including ocular infections. To determine if these antibiotics may be phototoxic to the eye, we exposed human lens epithelial cells to 0.125,1 mm FLQs (ciprofloxacin [Cipro], lomefloxacin [Lome], norfloxacin [Nor] and ofloxacin [Ofl]), the precursor quinolone nalidixic acid (Nalid) and UVA radiation (2.5 J cm,2). Based on fluorescence confocal microscopy, FLQs are diffused throughout the cytoplasm and preferentially located in the lysosomes of lens epithelial cells. Neither FLQ exposure alone nor UVA exposure alone reduced cell viability. However, with exposure to UVA radiation the FLQs studied (Cipro, Nor, Lome and Ofl) induced a phototoxic reaction that included necrosis, apoptosis, loss of cell viability as measured by MTS, and membrane damage as determined by the lactate dehydrogenase assay. Both Nalid and all FLQs studied (Cipro, Nor, Lome and Ofl) photopolymerized the lens protein ,-crystallin. Phototoxic damage to lens epithelial cells and/or ,-crystallin will lead to a loss of transparency of the human lens. However, if precautions are taken to filter all UV radiation from the eye while taking these antibiotics, eye damage may be prevented. [source] New Results on the Photochemistry of Biopterin and Neopterin in Aqueous SolutionPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 1 2009Mariana Vignoni New photochemical studies of the reactivity of biopterin (BPT) and neopterin (NPT) in acidic (pH = 5.5) and alkaline (pH = 10.5) aqueous solutions at 350 nm and room temperature were performed. The photochemical properties of BPT are of particular interest because the photolysis of this compound takes place in the white skin patches of patients affected by vitiligo. The photochemical reactions were followed by UV/VIS spectrophotometry, HPLC, electrochemical measurement of dissolved O2 and enzymatic methods for hydrogen peroxide (H2O2) and superoxide anion (O2,,) determinations. When BPT or NPT are exposed to UVA radiation, a red intermediate, very likely 6-formyl-5,8-dihydropterin, is generated in an O2 -independent process. That product is rapidly oxidized on admission of O2 to yield 6-formylpterin and H2O2. When the photolysis takes place in aerobic conditions, no additional pathways exist. On the other hand, in the absence of O2, the intermediate generated is not stable and leads to the formation of many products. O2,, is also generated during photo-oxidation of BPT and NPT. The quantum yields of reactant consumption depends on the O2 concentration: the higher the O2 concentration, the lower the quantum yields. This behavior is discussed in connection with the excited state of the pterins. [source] Measurement of Lens Protein Aggregation in Vivo Using Dynamic Light Scattering in a Guinea Pig/UVA Model for Nuclear CataractPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 6 2008M. Francis Simpanya The role of UVA radiation in the formation of human nuclear cataract is not well understood. We have previously shown that exposing guinea pigs for 5 months to a chronic low level of UVA light produces increased lens nuclear light scattering and elevated levels of protein disulfide. Here we have used the technique of dynamic light scattering (DLS) to investigate lens protein aggregation in vivo in the guinea pig/UVA model. DLS size distribution analysis conducted at the same location in the lens nucleus of control and UVA-irradiated animals showed a 28% reduction in intensity of small diameter proteins in experimental lenses compared with controls (P < 0.05). In addition, large diameter proteins in UVA-exposed lens nuclei increased five-fold in intensity compared to controls (P < 0.05). The UVA-induced increase in apparent size of lens nuclear small diameter proteins was three-fold (P < 0.01), and the size of large diameter aggregates was more than four-fold in experimental lenses compared with controls. The diameter of crystallin aggregates in the UVA-irradiated lens nucleus was estimated to be 350 nm, a size able to scatter light. No significant changes in protein size were detected in the anterior cortex of UVA-irradiated lenses. It is presumed that the presence of a UVA chromophore in the guinea pig lens (NADPH bound to zeta crystallin), as well as traces of oxygen, contributed to UVA-induced crystallin aggregation. The results indicate a potentially harmful role for UVA light in the lens nucleus. A similar process of UVA-irradiated protein aggregation may take place in the older human lens nucleus, accelerating the formation of human nuclear cataract. [source] Evaluation of a High Exposure Solar UV Dosimeter for Underwater UsePHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007Peter W. Schouten ABSTRACT Solar ultraviolet radiation (UV) is known to have a significant effect upon the marine ecosystem. This has been documented by many previous studies using a variety of measurement methods in aquatic environments such as oceans, streams and lakes. Evidence gathered from these investigations has shown that UVB radiation (280,320 nm) can negatively affect numerous aquatic life forms, while UVA radiation (320,400 nm) can both damage and possibly even repair certain types of underwater life. Chemical dosimeters such as polysulphone have been tested to record underwater UV exposures and in turn quantify the relationship between water column depth and dissolved organic carbon levels to the distribution of biologically damaging UV underwater. However, these studies have only been able to intercept UV exposures over relatively short time intervals. This paper reports on the evaluation of a high exposure UV dosimeter for underwater use. The UV dosimeter was fabricated from poly 2,6-dimethyl-1,4-phenylene oxide (PPO) film. This paper presents the dose response, cosine response, exposure additivity and watermarking effect relating to the PPO dosimeter as measured in a controlled underwater environment and will also detail the overnight dark reaction and UVA and visible radiation response of the PPO dosimeter, which can be used for error correction to improve the reliability of the UV data measured by the PPO dosimeters. These results show that this dosimeter has the potential for long-term underwater UV exposure measurements. [source] Photosensitized DNA Damage and its Protection via a Novel Mechanism,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 1 2007Yusuke Hiraku UVA, which accounts for approximately 95% of solar UV radiation, can cause mutations and skin cancer. Based mainly on the results of our study, this paper summarizes the mechanisms of UVA-induced DNA damage in the presence of various photosensitizers, and also proposes a new mechanism for its chemoprevention. UVA radiation induces DNA damage at the 5,-G of 5,-GG-3, sequence in double-stranded DNA through Type I mechanism, which involves electron transfer from guanine to activated photosensitizers. Endogenous sensitizers such as riboflavin and pterin derivatives and an exogenous sensitizer nalidixic acid mediate DNA photodamage via this mechanism. The major Type II mechanism involves the generation of singlet oxygen from photoactivated sensitizers, including hematoporphyrin and a fluoroquinolone antibacterial lomefloxacin, resulting in damage to guanines without preference for consecutive guanines. UVA also produces superoxide anion radical by an electron transfer from photoexcited sensitizers to oxygen (minor Type II mechanism), and DNA damage is induced by reactive species generated through the interaction of hydrogen peroxide with metal ions. The involvement of these mechanisms in UVA carcinogenesis is discussed. In addition, we found that xanthone derivatives inhibited DNA damage caused by photoexcited riboflavin via the quenching of its excited triplet state. It is thus considered that naturally occurring quenchers including xanthone derivatives may act as novel chemopreventive agents against photocarcinogenesis. [source] Ultraviolet A exposure might increase metastasis of mouse melanoma: a pilot studyPHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE, Issue 4 2005Riikka Pastila Background: The major sources of long-wave ultraviolet A radiation (UVA; 320,400 nm) exposure are extensive sunbathing and tanning in solaria. While the carcinogenic effects of mid-wave ultraviolet B radiation (UVB; 280,320 nm) are well recognized, the potentially hazardous effects of UVA are less understood. Several studies have shown that a variety of physiological processes in the cell are modified by UVA exposure, some of which might be involved in the regulation of tumor metastasis. In this study we suggest that UVA radiation could lead to the increase of metastatic capability of melanoma cells in mice. Method/result: A pilot in vivo study was executed using C57BL/6 mice and syngeneic B16 melanoma cell lines. Mice were intravenously (i.v.) injected with either B16-F1 or B16-F10 melanoma cells into the tail vein and then immediately exposed to UVA. Fourteen days after melanoma injection, lungs were collected and the quantity and quality of metastases were determined under a dissecting microscope. As an outcome of the pilot study we observed that i.v. injected melanoma cells formed more lung metastases in the UVA-exposed mice in comparison with the control mice. Conclusion: This result suggests that the UVA exposure of mice, with melanoma cells present in blood circulation, increases the formation of melanoma metastases in lungs. Further studies should determine whether a similar pro-metastatic effect, as observed in mice, could occur in humans and whether other than melanoma tumors might be susceptible. [source] 004 Validation of in vivo and in vitro methods to measure UVA protectiveness of sunscreenPHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE, Issue 2 2002C. Cole Standard methods for measuring the sunburning protection of sunscreens (SPF) are globally established. In vivo methods of determining UVA protectiveness of sunscreens have been reduced to either a Persistent Pigment Darkening (PPD) or Protection Factor A (PFA-either persistent pigment darkening or erythema endpoints) test protocols. Both of these techniques require human exposure to UVA radiation that can be time consuming and do not benefit the human subject. Validated methodologies that would minimize the UVA exposure, or could be performed in vitro would simplify the determination of UVA protectiveness and assist product optimization. Diffuse reflectance spectroscopy of sunscreens on human skin was utilized to evaluate a series of seven model sunscreen systems that were previously evaluated in vivo by both PPD and PFA testing. Correlation of the values found with this technique correlated highly with the in vivo test results, with 1:1 correspondence of protection values. Separately, an in vitro test model was assessed on these same model sunscreens. Sunscreen was applied to roughened surface quartz plates, and the absorbance of the sunscreens was measured before and after UV exposure. The absorbance was mathematically forced to fit the in vivo SPF value and the UVA protectiveness was calculated using both erythema and pigment darkening action spectra. The in vitro predictions of UVA was highly correlated with the in vivo PPD and PFA values. It was determined that preirradiation of the sunscreen samples is needed to accurately predict the protection provided by sunscreens that are not photostable. Both of these techniques provide new ways to accurately predict sunscreen UVA protectiveness. [source] Effect of UV irradiation on type I collagen fibril formation in neutral collagen solutionsPHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE, Issue 3 2001Julian M. Menter Background: Collagens have the well-known ability to spontaneously self-associate to form fibrils at physiological temperature and neutral pH in vitro and in vivo. Because solar UV may photochemically alter collagen, the kinetics of fibril formation may be modified. Thus, we have begun a systematic study of the effect of various UV wavebands on fibril formation. Methods: Citrate-soluble calf skin collagen (Elastin Products) was dissolved at 0.05% in 0.5 M HOAc, dialyzed over 2 days into two changes of 0.0327 M phosphate buffer, pH 7.0 at 4 °C, and centrifuged at 48 000×g. Photolysis was carried out at 4 °C with either (a) UVC (UVG,11 lamp), (b) filtered solar-simulating radiation (SSR) or UVA (SSR or UVL,21 lamp filtered with a 2.0 mm Schott WG 345 filter). Gelation was commenced by rapidly raising the temperature from 8 °C to 33 °C. Nucleation and growth were followed by turbidimetric measurements at 400 nm. Results: UVC radiation (0,17.3 J/cm2) resulted in a dose-dependent decrease in the rate of fibril growth. Under these conditions, concomitant collagen cross-linking and degradation occurred. Fibril nucleation, a prerequisite for growth, was rapid (threshold , 2 min) and was not affected by UVC, UVA or SSR. SSR (0,1320 J/cm2) caused a small decrease in growth rate and in the degree of fibril formation. UVA radiation (0,1080 J/cm2) had a similar effect. "Direct" photochemical damage thus paralleled absorption via various collagen chromophores, with UVC>SSR,UVA. The presence of riboflavin (RF) resulted in ground-state interactions that markedly altered both nucleation and growth kinetics. Irradiation with 29.6 J/cm2 UVA in the presence of RF photosensitizer caused relatively minor additional changes in fibrillation kinetics. Conclusions: These results collectively indicate that fibril formation is markedly dependent on specific ground state interactions and relatively insensitive to nonspecific UV damage. On the other hand, fibrils thus formed from photochemically altered collagen may have altered structural properties that could have subtle but unfavorable effects on the local dermal milieu in vivo. Notwithstanding, the relative insensitivity of fibrillogenesis to non-specific photochemical damage probably represents a favorable adaptation, overall, which tends to conserve the mechanical integrity of the skin. [source] Determination of UVA protection factors using the persistent pigment darkening (PPD) as the end pointPHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE, Issue 6 2000(Part 1) Calibration of the method Background/Aims: The accuracy and reliability of any method to assess the UVA protection effectiveness of sunscreens needs to be demonstrated. The aim of the present study was to calibrate the effectiveness of a biological end point (Persistent Pigment Darkening, PPD) to assess UVA photoprotection. Methods: Persistent Pigment Darkening was selected as the end point because its action spectrum extends across the UVA. A broad UVA source was chosen to challenge all UVA wavelengths. Attenuation of UVA was performed with neutral density filters (equally absorbing at all wavelengths). Human subjects were tested with a series of UVA beams attenuated by the neutral density filters. The UVA protection effectiveness of a standard sunscreen was also tested with four panels of volunteers to assess the reproducibility of the method. Results: The attenuation factors of the neutral density filters were found to correspond to the UVA protection factors arrived at with PPD as the end point. The repetitive tests showed a good internal consistency of the method. Conclusions: The calibration procedure proposed shows threshold PPD, used as an end point in a UVA-PF test method, to be a reliable endogenous dosimeter for UVA radiation that enters the skin. [source] The effect of whole-body sunbed ultraviolet A exposure on the pharmacokinetics of the photolabile drug nifedipinePHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE, Issue 3 2000H. S. Al-Ajmi The calcium antagonist nifedipine absorbs ultraviolet A (UVA) radiation and readily photodegrades in vitro to a toxic nitroso-pyridine photoproduct. We examined whether whole body exposure of normal subjects to sunbed UVA radiation would affect the pharmacokinetics of nifedipine. Eight healthy, male, Caucasian volunteers (phototypes I,III) participated in this ethically approved, randomised, cross-over study. Each subject attended on 2 occasions, one week apart, and on each occasion was given a single oral dose (10 mg) of nifedipine following which blood samples were collected at 0, 0.5, 1. 1.5, 2, 2.5, 3, 3.5, 4, 5, 6 and 7 h. During one of the visits, 15 min after nifedipine ingestion, a whole-body UVA (sunbed comprising Philips R-UVA lamps) dose of 70% of the individual's predetermined minimal phototoxic dose was delivered over a period of 17,36 min. Plasma nifedipine levels were measured using a standard reverse-phase high-performance liquid chromatography method. The area under the plasma concentration-time curve (AUC) of nifedipine during the UVA irradiation session (median 206 ng,·,ml,1,·,h,1) was significantly higher than during the non-irradiation control session (median 174.5 ng,·,ml,1,·,h,1) (P=0.03; 95% C.I. for difference in medians 9.9 to 55.9 ng,·,ml,1,·,h,1). UVA irradiation did not significantly affect any of the other measured pharmacokinetic parameters (Cmax, t1/2, tmax). We demonstrate that sunbed UVA irradiation does not lead to in vivo photodegradation of nifedipine in healthy humans after a single dose. The apparent increase in AUC during UVA irradiation may be due to slightly slower metabolism of nifedipine in the presence of toxic photoproduct(s) or due to blood distribution changes affecting liver blood flow. [source] Plasma levels of opioid peptides after sunbed exposuresBRITISH JOURNAL OF DERMATOLOGY, Issue 6 2002T. Gambichler Summary Background Previous studies have indicated that solar and artificial ultraviolet (UV) radiation have a positive influence on psychological variables such as mood and emotional state. Circulating opioid peptides have been suggested as being important in this effect. Objectives To investigate in a controlled trial the influence of UVA radiation on opioid peptide levels. Methods We determined plasma levels of ,-endorphin immunoreactive material (IRM) and met-enkephalin in UV-exposed ( n = 35) and non-exposed ( n = 9) healthy volunteers. On the first day of the study, blood samples were taken from the volunteers (time A). UVA irradiation was subsequently administered with an air-conditioned tanning device. During the UV exposures the volunteers wore opaque goggles. Twenty minutes after UV exposure, blood samples were collected again (time B). Within the following 3 weeks the volunteers had a series of five UV exposures. On the last day of the study (24 h after the sixth UV exposure) blood samples were collected (time C). The cumulative UVA doses were 96 J cm ,2 for skin type II and 126 J cm ,2 for skin type III. The controls had no UV exposures. Plasma ,-endorphin IRM and met-enkephalin levels were determined using radioimmunoassays. Results At all times of blood collection (A, B, C), there were no significant differences in plasma levels of ,-endorphin IRM and met-enkephalin between UV-exposed and non-exposed volunteers ( P > 0·05). Conclusions UVA irradiation does not significantly elevate plasma levels of ,-endorphin IRM and met-enkephalin. Therefore we suggest that psychological benefits claimed to occur after UV exposure are unlikely to be mediated by the types of circulating opioid peptides measured in this study. [source] |