Ubiquitous Distribution (ubiquitous + distribution)

Distribution by Scientific Domains

Selected Abstracts

Spatio-temporal distribution of cellular retinoid binding protein gene transcripts in the developing and the adult cochlea.

CRBPI-null mutant mice, Morphological, functional consequences in CRABP-
Abstract The expression patterns of the mouse cellular retinoid binding protein genes were investigated by in situ hybridization analysis in the inner ear from 10.5 days post co´tum (dpc) up to the adult stage. The cellular retinoic acid binding protein II (CRABPII) and cellular retinol binding protein I (CRBPI) were present in a widespread and abundant pattern in cochlear structures during embryogenesis. Expression of the cellular retinoic acid binding protein I (CRABPI) is restricted during development in K÷lliker's organ whilst cellular retinol binding protein II (CRBPII) is only visible after birth with a ubiquitous distribution in most regions of the cochlea including nervous components. No CRABP or CRBP transcripts were observed in the auditory receptors. Morphological observations of CRBPI- and CRABPI/CRABPII-null mutant fetus at 18.5 dpc do not show any structural modification at the level of the organ of Corti. Furthermore, electrophysiological tests performed by measuring distorsion-product otoacoustic emissions and auditory brainstem evoked responses did not present significant alteration of the auditory function for the different types of mutants. The expression of retinoid binding proteins in cochlear structures during embryogenesis could suggest important roles for these proteins during ontogenesis and morphogenesis of the inner ear. Despite these observations, morphological and functional data from mutant mice did not present obvious modifications of the cochlear structures and auditory thresholds. It is therefore unlikely that CRABPs and CRBPI are directly involved in development of the cochlea and hair cell differentiation. [source]

Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment

J.O. Falkinham
Summary A majority of the Mycobacterium species, called the nontuberculous mycobacteria (NTM), are natural inhabitants of natural waters, engineered water systems, and soils. As a consequence of their ubiquitous distribution, humans are surrounded by these opportunistic pathogens. A cardinal feature of mycobacterial cells is the presence of a hydrophobic, lipid-rich outer membrane. The hydrophobicity of NTM is a major determinant of aerosolization, surface adherence, biofilm-formation, and disinfectant- and antibiotic resistance. The NTM are oligotrophs, able to grow at low carbon levels [>50 ,g assimilable organic carbon (AOC) l,1], making them effective competitors in low nutrient, and disinfected environments (drinking water). Biofilm formation and oligotrophy lead to survival, persistence, and growth in drinking water distribution systems. In addition to their role as human and animal pathogens, the widespread distribution of NTM in the environment, coupled with their ability to degrade and metabolize a variety of complex hydrocarbons including pollutants, suggests that NTM may be agents of nutrient cycling. [source]

Thyroid Hormones Promote Chondrocyte Differentiation in Mouse ATDC5 Cells and Stimulate Endochondral Ossification in Fetal Mouse Tibias Through Iodothyronine Deiodinases in the Growth Plate,

Masako Miura
Abstract Thyroid hormones (THs), 3,3,,5-triiodo- L -thyronine (T3) and L -thyroxine (T4), are important for the normal development of the growth plate (GP); congenital TH deficiency leads to severe dwarfism. In mouse chondrogenic cell line, ATDC5, T3 enhanced differentiation and increased Alizarin red staining, but did not affect Alcian blue staining. In organ-cultured mouse tibias, THs stimulated the cartilage growth, especially in the hypertrophic zone. Interestingly, T4 was as equally potent as T3 in organ-cultured tibias, which suggests that T4 is metabolized locally to T3, because T4 is a prohormone and must be converted to T3 for its activity. Two enzymes catalyze the conversion; type I deiodinase (D1) and type II deiodinase (D2). D1 has a ubiquitous distribution and D2, with a high affinity for T4, is present where the maintenance of intracellular T3 concentration is critical. Messenger RNAs (mRNAs) for D1 and D2 were detected in neonatal mouse tibias and ATDC5 cells. The enzyme activity was unaffected by the D1 inhibitor 6-propyl-2-thiouracil, suggesting that D2 mainly catalyzes the reaction. D2 mRNA was detected in differentiated ATDC5 cells. In organ-cultured mouse tibias, D2 activity was greater at later stages. In contrast, thyroid hormone receptors (TRs) were expressed in neonatal mouse tibias and ATDC5 cells, but their expression levels in ATDC5 cells were stable throughout the culture periods. Therefore, increased T3 production at later stages by D2 is likely to contribute to the preferential effects of THs in the terminal differentiation of GP. This article is the first to show that T4 is activated locally in GP and enhances the understanding of TH effects in GP. [source]

Lipid-transfer proteins as potential plant panallergens: cross-reactivity among proteins of Artemisia pollen, Castanea nut and Rosaceae fruits, with different IgE-binding capacities

A. D═az-Perales
Background Lipid-transfer proteins (LTPs), but not Bet v 1 homologues, have been identified as major allergens of apple and peach in the Rosaceae fruit-allergic population in the Mediterranean area. Many of these patients show cosensitization to mugwort pollen. LTPs have an ubiquitous distribution in tissues of many plant species, and have been proposed as a novel type of plant panallergens. Objective We sought to isolate LTPs from Artemisia pollen and from a plant food not belonging to the Rosaceae family, such as chestnut nut, and to compare their amino acid sequences and IgE-binding capacities with those of apple and peach LTPs. Methods Allergens (LTPs) were isolated by different chromatographic methods (gel-filtration, ion exchange and/or reverse-phase HPLC), and characterized by N-terminal amino acid sequencing and MALDI analysis. Specific IgE-quantification and immunodetection, as well as immunoblot and ELISA inhibition assays, were carried out using sera from patients allergic to both apple and peach. Results Purified LTPs from Artemisia pollen and from chestnut seed showed molecular masses about 9 700d, and 43,50% sequence identity with the equivalent allergens of apple and peach in the first 30 N-terminal residues, which comprise about one third of the total amino acid sequence. A similar degree of sequence identity (50%) was found between the Artemisia and chestnut proteins. Both isolated LTPs bound specific IgE of sera from Rosaceae fruits allergic patients. However, substantially lower values of specific IgE-binding and maximum ELISA inhibition percentages were obtained for Artemisia and chestnut LTPs when compared to those from apple and peach. Conclusion LTPs from Artemisia pollen and chestnut crossreact with allergens (LTPs) of Rosaceae fruits, but significant differences in specific IgE-binding capacities were observed among members of the plant LTP family. Thus, further studies are needed to evaluate the clinical significance of the observed cross-reactivities of plant LTPs. [source]

Complex phylogeographic patterns in the freshwater alga Synura provide new insights into ubiquity vs. endemism in microbial eukaryotes

Abstract The global distribution, abundance, and diversity of microscopic freshwater algae demonstrate an ability to overcome significant barriers such as dry land and oceans by exploiting a range of biotic and abiotic colonization vectors. If these vectors are considered unlimited and colonization occurs in proportion to population size, then globally ubiquitous distributions are predicted to arise. This model contrasts with observations that many freshwater microalgal taxa possess true biogeographies. Here, using a concatenated multigene data set, we study the phylogeography of the freshwater heterokont alga Synura petersenii sensu lato. Our results suggest that this Synura morphotaxon contains both cosmopolitan and regionally endemic cryptic species, co-occurring in some cases, and masked by a common ultrastructural morphology. Phylogenies based on both proteins (seven protein-coding plastid and mitochondrial genes) and DNA (nine genes including ITS and 18S rDNA) reveal pronounced biogeographic delineations within phylotypes of this cryptic species complex while retaining one clade that is globally distributed. Relaxed molecular clock calculations, constrained by fossil records, suggest that the genus Synura is considerably older than currently proposed. The availability of tectonically relevant geological time (107,108 years) has enabled the development of the observed, complex biogeographic patterns. Our comprehensive analysis of freshwater algal biogeography suggests that neither ubiquity nor endemism wholly explains global patterns of microbial eukaryote distribution and that processes of dispersal remain poorly understood. [source]