Home About us Contact | |||
Type X Collagen (type + x_collagen)
Selected AbstractsThe role of type X collagen in facilitating and regulating endochondral ossification of articular cartilageORTHODONTICS & CRANIOFACIAL RESEARCH, Issue 1 2005G Shen Structured Abstract Author , Shen G Objective , This review was compiled to explore the role of type X collagen in growth, development and remodeling of articular cartilage by elucidating the linkage between the synthesis of this protein and the phenotypic changes in chondrogenesis and the onset of endochondral ossification. Design , The current studies closely dedicated to elucidating the role of type X collagen incorporating into chondrogenesis and endochondral ossification of articular cartilage were assessed and analyzed to allow for obtaining the mainstream consensus on the bio-molecular mechanism with which type X collagen functions in articular cartilage. Results , There are spatial and temporal correlations between synthesis of type X collagen and occurrence of endochondral ossification. The expression of type X collagen is confined within hypertrophic condrocytes and precedes the embark of endochondral bone formation. Type X collagen facilitates endochondral ossification by regulating matrix mineralization and compartmentalizing matrix components. Conclusion , Type X collagen is a reliable marker for new bone formation in articular cartilage. The future clinical application of this collagen in inducing or mediating endochondral ossification is perceived, e.g. the fracture healing of synovial joints and adaptive remodeling of madibular condyle. [source] Identification of the core element responsive to runt-related transcription factor 2 in the promoter of human type x collagen geneARTHRITIS & RHEUMATISM, Issue 1 2009Akiro Higashikawa Objective Type X collagen and runt-related transcription factor 2 (RUNX-2) are known to be important for chondrocyte hypertrophy during skeletal growth and repair and development of osteoarthritis (OA) in mice. Aiming at clinical application, this study was undertaken to investigate transcriptional regulation of human type X collagen by RUNX-2 in human cells. Methods Localization of type X collagen and RUNX-2 was determined by immunohistochemistry, and their functional interaction was examined in cultured mouse chondrogenic ATDC-5 cells. Promoter activity of the human type X collagen gene (COL10A1) was examined in human HeLa, HuH7, and OUMS27 cells transfected with a luciferase gene containing a 4.5-kb promoter and fragments. Binding to RUNX-2 was examined by electrophoretic mobility shift assay and chromatin immunoprecipitation. Results RUNX-2 and type X collagen were co-localized in mouse limb cartilage and bone fracture callus. Gain and loss of function of RUNX-2 revealed that RUNX-2 is essential for type X collagen expression and terminal differentiation of chondrocytes. Human COL10A1 promoter activity was enhanced by RUNX-2 alone and more potently by RUNX-2 in combination with the coactivator core-binding factor , in all 3 human cell lines examined. Deletion, mutagenesis, and tandem repeat analyses identified the core responsive element as the region between ,89 and ,60 bp (termed the hypertrophy box [HY box]), which showed specific binding to RUNX-2. Other putative RUNX-2 binding motifs in the human COL10A1 promoter did not respond to RUNX-2 in human cells. Conclusion Our findings indicate that the HY box is the core element responsive to RUNX-2 in human COL10A1 promoter. Studies on molecular networks related to RUNX-2 and the HY box will lead to treatments of skeletal growth retardation, bone fracture, and OA. [source] Inactivation of Pten in Osteo-Chondroprogenitor Cells Leads to Epiphyseal Growth Plate Abnormalities and Skeletal Overgrowth,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2007Alice Fiona Ford-Hutchinson Abstract To study the role of the Pten tumor suppressor in skeletogenesis, we generated mice lacking this key phosphatidylinositol 3,-kinase pathway regulator in their osteo-chondroprogenitors. A phenotype of growth plate dysfunction and skeletal overgrowth was observed. Introduction: Skeletogenesis is a complex process relying on a variety of ligands that activate a range of intracellular signal transduction pathways. Although many of these stimuli are known to activate phosphatidylinositol 3,-kinase (PI3K), the function of this pathway during cartilage development remains nebulous. To study the role of PI3K during skeletogenesis, we used mice deficient in a negative regulator of PI3K signaling, the tumor suppressor, Pten. Materials and Methods:Pten gene deletion in osteo-chondrodroprogenitors was obtained by interbreeding mice with loxP-flanked Pten exons with mice expressing the Cre recombinase under the control of the type II collagen gene promoter (Ptenflox/flox:Col2a1Cre mice). Phenotypic analyses included microcomputed tomography and immunohistochemistry techniques. Results: ,CT revealed that Ptenflox/flox:Col2a1Cre mice exhibited both increased skeletal size, particularly of vertebrae, and massive trabeculation accompanied by increased cortical thickness. Primary spongiosa development and perichondrial bone collar formation were prominent in Ptenflox/flox:Col2a1Cre mice, and long bone growth plates were disorganized and showed both matrix overproduction and evidence of accelerated hypertrophic differentiation (indicated by an altered pattern of type X collagen and alkaline phosphatase expression). Consistent with increased PI3K signaling, Pten-deficient chondrocytes showed increased phospho-PKB/Akt and phospho-S6 immunostaining, reflective of increased mTOR and PDK1 activity. Interestingly, no significant change in growth plate proliferation was seen in Pten-deficient mice, and growth plate fusion was found at 6 months. Conclusions: By virtue of its ability to modulate a key signal transduction pathway responsible for integrating multiple stimuli, Pten represents an important regulator of both skeletal size and bone architecture. [source] Differential gene expression analysis using paraffin-embedded tissues after laser microdissectionJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2003Joung-Ok Kim Abstract Recent advances in laser microdissection allow for precise removal of pure cell populations from morphologically preserved tissue sections. However, RNA from paraffin-embedded samples is usually degraded during microdissection. The purpose of this study is to determine the optimal fixative for RNA extractions from laser microdissected paraffin-embedded samples. The integrity of RNA was evaluated with the intactness of 18S and 28S ribosomal RNA by electrophoresis and by the length of individual gene transcripts using RT-PCR. The various fixatives were methacarn (a combination of methanol, chloroform, and acetic acid) and several concentrations of ethanol and isopropanol. Methacarn was the optimal fixative for RNA preservation in paraffin-embedded tissues, which included liver, lung, kidney, muscle, and limb. Based on RT-PCR analysis, methacarn fixed samples exhibited the expected RNA sizes for individual genes such as glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) and bone-related genes (e.g., alkaline phosphatase and osteonectin). The laser microdissection technique with methacarn fixation was then applied to analyze the differential gene expression between hypertrophic and proliferative chondrocytes in the growth plate of long bone. The expression of type X collagen (ColX,1), a specific gene for hypertrophic chondrocytes, was only observed in hypertrophic chondrocytes, while type II collagen (Col2,1) was observed more broadly in the growth plate as anticipated. Thus, combining laser microdissection with methacarn fixation facilitates the examination of differentially expressed genes from various tissues. © 2003 Wiley-Liss, Inc. [source] Prostaglandin E2 inhibits BMP signaling and delays chondrocyte maturationJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2009Christine A. Clark Abstract While cyclooxygenases are important in endochondral bone formation during fracture healing, mechanisms involved in prostaglandin E2 (PGE2) regulation of chondrocyte maturation are incompletely understood. The present study was undertaken to determine if PGE2 effects on chondrocyte differentiation are related to modulation of the bone morphogenetic protein (BMP) signaling pathway. In primary murine sternal chondrocytes, PGE2 differentially regulated genes involved in differentiation. PGE2 induced type II collagen and MMP-13, had minimal effects on alkaline phosphatase, and inhibited the expression of the maturational marker, type X collagen. In BMP-2,treated cultures, PGE2 blocked the induction of type X collagen. All four EP receptors were expressed in chondrocytes and tended to be inhibited by BMP-2 treatment. RCJ3.1C5.18 chondrocytes transfected with the protein kinase A (PKA) responsive reporter, CRE-luciferase, showed luciferase induction following exposure to PGE2, consistent with activation of PKA signaling and the presence of the EP2 and EP4 receptors. Both PGE2 and the PKA agonist, dibutyryl cAMP, blocked the induction of the BMP-responsive reporter, 12XSBE, by BMP-2 in RCJ3.1C5.18 chondrocytes. In contrast, PGE2 increased the ability of TGF-, to activate the TGF-,-responsive reporter, 4XSBE. Finally, PGE2 down-regulated BMP-mediated phosphorylation of Smads 1, 5, and 8 in RCJ3.1C5.18 cells and in primary murine sternal chondrocytes. Altogether, the findings show that PGE2 regulates chondrocyte maturation in part by targeting BMP/Smad signaling and suggest an important role for PGE2 in endochondral bone formation. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 785,792, 2009 [source] Regulation of embryonic endochondral ossification by Smurf2JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2008Qiuqian Wu Abstract Smurf2 is an E3 ubiquitin ligase that targets TGF-, receptor activated Smad2 and Smad3 for the proteasome in primary articular chondrocytes, thus stimulating their hypertrophic differentiation. Comparatively, how Smurf2 functions in growth plate chondrocytes in a developing long bone is an open question. In this study, we measured the mRNA levels of endogenous Smurf2 and type X collagen in chick growth plate at different embryonic stages to monitor the correlation between the level of Smurf2 expression and chondrocyte maturational stage. We found that high levels of Smurf2 were associated with the differentiative and proliferative stages, while Smurf2 levels were thereafter decreased as the chondrocytes matured toward hypertrophy. In addition, we injected Smurf2 -RCAS into chick wing buds at HH stage 20,23 and examined how the ectopic overexpression of Smurf2 in condensing chondrogenic mesenchyme affects the subsequent process of chondrocyte maturation and ossification during embryonic development. Histological analysis showed that overexpression of Smurf2 in a developing wing bud accelerated chondrocyte maturation and endochondral ossification, which may result from a decrease in TGF-, signaling in the infected chondrocytes with Smurf2 -RCAS. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:704,712, 2008 [source] The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilageORTHODONTICS & CRANIOFACIAL RESEARCH, Issue 1 2005G Shen Structured Abstract Author , Shen G Objective , This review was compiled to explore the role of type X collagen in growth, development and remodeling of articular cartilage by elucidating the linkage between the synthesis of this protein and the phenotypic changes in chondrogenesis and the onset of endochondral ossification. Design , The current studies closely dedicated to elucidating the role of type X collagen incorporating into chondrogenesis and endochondral ossification of articular cartilage were assessed and analyzed to allow for obtaining the mainstream consensus on the bio-molecular mechanism with which type X collagen functions in articular cartilage. Results , There are spatial and temporal correlations between synthesis of type X collagen and occurrence of endochondral ossification. The expression of type X collagen is confined within hypertrophic condrocytes and precedes the embark of endochondral bone formation. Type X collagen facilitates endochondral ossification by regulating matrix mineralization and compartmentalizing matrix components. Conclusion , Type X collagen is a reliable marker for new bone formation in articular cartilage. The future clinical application of this collagen in inducing or mediating endochondral ossification is perceived, e.g. the fracture healing of synovial joints and adaptive remodeling of madibular condyle. [source] Ossification of the mouse metatarsal: Differentiation and proliferation in the presence/absence of a defined growth plateTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 1 2006Philip L. Reno Abstract There is significant diversity in growth plate behavior among sites within an individual skeleton and between skeletons of different species. This variation within wild-type animals is an underutilized resource for studying skeletal development. One bone that potentially exhibits the most diverse behavior is the metatarsal. While one end forms a growth plate with an epiphyseal secondary center of ossification as in other long bones, the opposite end undergoes direct ossification in a manner more similar to short bones. Although descriptions of human metatarsal/metacarpal ossification are available, a detailed comparative analysis has yet to be conducted in an animal model amenable to biomolecular analysis. Here we report an analysis of proximal and distal ossification in an age series of mouse metatarsals. Safranin O staining was used for qualitative and quantitative histology, and chondrocyte differentiation and proliferation were analyzed using immunohistochemistry for type X collagen and proliferative cell nuclear antigen expression. We establish that, as in the human, both growth plate formation and direct ossification occur in the mouse metatarsal, with chondrocyte populations showing distinct differentiation patterns at opposite ends of the bone. In addition, growth plate formation is characterized by a peak of proliferation in reserve zone chondrocytes that distinguishes it from both established growth plates and direct ossification. Our analysis demonstrates that the mouse metatarsal is a productive model for investigating natural variation in ossification that can further understanding of vertebrate skeletal development and evolution. © 2005 Wiley-Liss, Inc. [source] Human articular chondrocytes secrete parathyroid hormone,related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesisARTHRITIS & RHEUMATISM, Issue 9 2010J. Fischer Objective The use of bone marrow,derived mesenchymal stem cells (MSCs) has shown promise in cell-based cartilage regeneration. A yet-unsolved problem, however, is the unwanted up-regulation of markers of hypertrophy, such as alkaline phosphatase (AP) and type X collagen, during in vitro chondrogenesis and the formation of unstable calcifying cartilage at heterotopic sites. In contrast, articular chondrocytes produce stable, nonmineralizing cartilage. The aim of this study was to address whether coculture of MSCs with human articular chondrocytes (HACs) can suppress the undesired hypertrophy in differentiating MSCs. Methods MSCs were differentiated in chondrogenic medium that had or had not been conditioned by parallel culture with HAC pellets, or MSCs were mixed in the same pellet with the HACs (1:1 or 1:2 ratio) and cultured for 6 weeks. Following in vitro differentiation, the pellets were transplanted into SCID mice. Results The gene expression ratio of COL10A1 to COL2A1 and of Indian hedgehog (IHH) to COL2A1 was significantly reduced by differentiation in HAC-conditioned medium, and less type X collagen protein was deposited relative to type II collagen. AP activity was significantly lower (P < 0.05) in the cells that had been differentiated in conditioned medium, and transplants showed significantly reduced calcification in vivo. In mixed HAC/MSC pellets, suppression of AP was dose-dependent, and in vivo calcification was fully inhibited. Chondrocytes secreted parathyroid hormone,related protein (PTHrP) throughout the culture period, whereas PTHrP was down-regulated in favor of IHH up-regulation in control MSCs after 2,3 weeks of chondrogenesis. The main inhibitory effects seen with HAC-conditioned medium were reproducible by PTHrP supplementation of unconditioned medium. Conclusion HAC-derived soluble factors and direct coculture are potent means of improving chondrogenesis and suppressing the hypertrophic development of MSCs. PTHrP is an important candidate soluble factor involved in this effect. [source] Chondrocyte innate immune myeloid differentiation factor 88,dependent signaling drives procatabolic effects of the endogenous toll-like receptor 2/toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in miceARTHRITIS & RHEUMATISM, Issue 7 2010Ru Liu-Bryan Objective Toll-like receptor 2 (TLR-2)/TLR-4,mediated innate immunity serves as a frontline antimicrobial host defense, but also modulates tissue remodeling and repair responses to endogenous ligands released during low-grade inflammation. We undertook the present study to assess whether the endogenous TLR-2/TLR-4 ligands low molecular weight hyaluronan (LMW-HA) and high mobility group box chromosomal protein 1 (HMGB-1), which are increased in osteoarthritic (OA) joints, drive procatabolic chondrocyte responses dependent on TLR-2 and TLR-4 signaling through the cytosolic adaptor myeloid differentiation factor 88 (MyD88). Methods We studied mature femoral head cap cartilage explants and immature primary knee articular chondrocytes from TLR-2/TLR-4,double-knockout, MyD88-knockout, and congenic wild-type mice. Generation of nitric oxide (NO), degradation of hyaluronan, release of HMGB-1, matrix metalloproteinase 3 (MMP-3), and MMP-13, and protein expression of type X collagen were assessed by Griess reaction and Western blotting analyses. Expression of messenger RNA for type II and type X collagen, MMP-13, and RUNX-2 was examined by real-time quantitative reverse transcription,polymerase chain reaction. Results Interleukin-1, and TLR-2 and TLR-4 ligands induced both HMGB-1 release from chondrocytes and extracellular LMW-HA generation in normal chondrocytes. TLR-2/TLR-4,/, and MyD88,/, mouse cartilage explants and chondrocytes lost the capacity to mount procatabolic responses to both LMW-HA and HMGB-1, demonstrated by >95% suppression of NO production (P < 0.01), and attenuated induction of MMP-3 and MMP-13. Combined deficiency of TLR-2/TLR-4, or of MyD88 alone, also attenuated release of NO and blunted induction of MMP-3 and MMP-13 release. MyD88 was necessary for HMGB-1 and hyaluronidase 2 (which generates LMW-HA) to induce chondrocyte hypertrophy, which is implicated in OA progression. Conclusion MyD88-dependent TLR-2/TLR-4 signaling is essential for procatabolic responses to LMW-HA and HMGB-1, and MyD88 drives chondrocyte hypertrophy. Therefore, LMW-HA and HMGB-1 act as innate immune cytokine-like signals with the potential to modulate chondrocyte differentiation and function in OA progression. [source] Estradiol inhibits chondrogenic differentiation of mesenchymal stem cells via nonclassic signalingARTHRITIS & RHEUMATISM, Issue 4 2010Zsuzsa Jenei-Lanzl Objective We undertook this study to examine the effects of estradiol on chondrogenesis of human bone marrow,derived mesenchymal stem cells (MSCs), with consideration of sex-dependent differences in cartilage repair. Methods Bone marrow was obtained from the iliac crest of young men. Density-gradient centrifugation,separated human MSCs proliferated as a monolayer in serum-containing medium. After confluence was achieved, aggregates were created and cultured in a serum-free differentiation medium. We added different concentrations of 17,-estradiol (E2) with or without the specific estrogen receptor inhibitor ICI 182.780, membrane-impermeable E2,bovine serum albumin (E2-BSA), ICI 182.780 alone, G-1 (an agonist of G protein,coupled receptor 30 [GPR-30]), and G15 (a GPR-30 antagonist). After 21 days, the aggregates were analyzed histologically and immunohistochemically; we quantified synthesized type II collagen, DNA content, sulfated glycosaminoglycan (sGAG) concentrations, and type X collagen and matrix metalloproteinase 13 (MMP-13) expression. Results The existence of intracellular and membrane-associated E2 receptors was shown at various stages of chondrogenesis. Smaller aggregates and significantly lower type II collagen and sGAG content were detected after treatment with E2 and E2-BSA in a dose-dependent manner. Furthermore, E2 enhanced type X collagen and MMP-13 expression. Compared with estradiol alone, the coincubation of ICI 182.780 with estradiol enhanced suppression of chondrogenesis. Treatment with specific GPR-30 agonists alone (G-1 and ICI 182.780) resulted in a considerable inhibition of chondrogenesis. In addition, we found an enhancement of hypertrophy by G-1. Furthermore, the specific GPR-30 antagonist G15 reversed the GPR-30,mediated inhibition of chondrogenesis and up-regulation of hypertrophic gene expression. Conclusion The experiments revealed a suppression of chondrogenesis by estradiol via membrane receptors (GPR-30). The study opens new perspectives for influencing chondrogenesis on the basis of classic and nonclassic estradiol signaling. [source] Matrix metalloproteinase 13,deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte developmentARTHRITIS & RHEUMATISM, Issue 12 2009C. B. Little Objective To investigate the role of matrix metalloproteinase 13 (MMP-13; collagenase 3) in osteoarthritis (OA). Methods OA was surgically induced in the knees of MMP-13,knockout mice and wild-type mice, and mice were compared. Histologic scoring of femoral and tibial cartilage aggrecan loss (0,3 scale), erosion (0,7 scale), and chondrocyte hypertrophy (0,1 scale), as well as osteophyte size (0,3 scale) and maturity (0,3 scale) was performed. Serial sections were stained for type X collagen and the MMP-generated aggrecan neoepitope DIPEN. Results Following surgery, aggrecan loss and cartilage erosion were more severe in the tibia than femur (P < 0.01) and tibial cartilage erosion increased with time (P < 0.05) in wild-type mice. Cartilaginous osteophytes were present at 4 weeks and underwent ossification, with size and maturity increasing by 8 weeks (P < 0.01). There was no difference between genotypes in aggrecan loss or cartilage erosion at 4 weeks. There was less tibial cartilage erosion in knockout mice than in wild-type mice at 8 weeks (P < 0.02). Cartilaginous osteophytes were larger in knockout mice at 4 weeks (P < 0.01), but by 8 weeks osteophyte maturity and size were no different from those in wild-type mice. Articular chondrocyte hypertrophy with positive type X collagen and DIPEN staining occurred in both wild-type and knockout mouse joints. Conclusion Our findings indicate that structural cartilage damage in a mouse model of OA is dependent on MMP-13 activity. Chondrocyte hypertrophy is not regulated by MMP-13 activity in this model and does not in itself lead to cartilage erosion. MMP-13 deficiency can inhibit cartilage erosion in the presence of aggrecan depletion, supporting the potential for therapeutic intervention in established OA with MMP-13 inhibitors. [source] Parathyroid hormone 1,34 inhibits terminal differentiation of human articular chondrocytes and osteoarthritis progression in ratsARTHRITIS & RHEUMATISM, Issue 10 2009Je-Ken Chang Objective Parathyroid hormone 1,34 (PTH[1,34]), a parathyroid hormone analog, shares the same receptor, PTH receptor 1, with parathyroid hormone,related peptide (PTHrP). This study was undertaken to address the hypothesis that PTH(1,34) inhibits terminal differentiation of articular chondrocytes and in turn suppresses the progression of osteoarthritis (OA). Methods We studied the effect of PTH(1,34) on human articular chondrocytes with azacytidine (azaC),induced terminal differentiation in vitro and on papain-induced OA in the knee joints of rats. In the in vitro study, we measured the levels of messenger RNA for SOX9, aggrecan, type II collagen, type X collagen, alkaline phosphatase (AP), Indian hedgehog (IHH), Bcl-2, and Bax by real-time polymerase chain reaction, levels of glycosaminoglycan (GAG) by dimethylmethylene blue assay, and rate of apoptosis by TUNEL staining. In the in vivo study, we evaluated the histologic changes in GAG, type II collagen, type X collagen, and chondrocyte apoptosis in the articular cartilage of rat knees. Results AzaC induced terminal differentiation of human chondrocytes, including down-regulation of aggrecan, type II collagen, and GAG and up-regulation of type X collagen, alkaline phosphatase, and IHH. Apoptosis was reversed by 3,10 days of treatment with 10 nM PTH(1,34). SOX9 expression was not changed by either azaC or PTH(1,34) treatment. Bcl-2 and Bax were up-regulated on day 10 and day 14, respectively, after azaC induction of terminal differentiation, but PTH(1,34) treatment did not reverse this effect. Furthermore, PTH(1,34) treatment reversed papain-induced OA changes (decreasing GAG and type II collagen, and increasing type X collagen and chondrocyte apoptosis) in the knee joints of rats. Conclusion Our findings indicate that PTH(1,34) inhibits the terminal differentiation of human articular chondrocytes in vitro and inhibits progression of OA in rats in vivo, and may be used to treat OA. [source] Calcification of articular cartilage in human osteoarthritisARTHRITIS & RHEUMATISM, Issue 9 2009M. Fuerst Objective Hypertrophic chondrocyte differentiation is a key step in endochondral ossification that produces basic calcium phosphates (BCPs). Although chondrocyte hypertrophy has been associated with osteoarthritis (OA), chondrocalcinosis has been considered an irregular event and linked mainly to calcium pyrophosphate dihydrate (CPPD) deposition. The aim of this study was to determine the prevalence and composition of calcium crystals in human OA and analyze their relationship to disease severity and markers of chondrocyte hypertrophy. Methods One hundred twenty patients with end-stage OA undergoing total knee replacement were prospectively evaluated. Cartilage calcification was studied by conventional x-ray radiography, digital-contact radiography (DCR), field-emission scanning electron microscopy (FE-SEM), and synovial fluid analysis. Cartilage calcification findings were correlated with scores of knee function as well as histologic changes and chondrocyte hypertrophy as analyzed in vitro. Results DCR revealed mineralization in all cartilage specimens. Its extent correlated significantly with the Hospital for Special Surgery knee score but not with age. FE-SEM analysis showed that BCPs, rather than CPPD, were the prominent minerals. On histologic analysis, it was observed that mineralization correlated with the expression of type X collagen, a marker of chondrocyte hypertrophy. Moreover, there was a strong correlation between the extent of mineralization in vivo and the ability of chondrocytes to produce BCPs in vitro. The induction of hypertrophy in healthy human chondrocytes resulted in a prominent mineralization of the extracellular matrix. Conclusion These results indicate that mineralization of articular cartilage by BCP is an indissociable process of OA and does not characterize a specific subset of the disease, which has important consequences in the development of therapeutic strategies for patients with OA. [source] Interleukin-1, and tumor necrosis factor , inhibit chondrogenesis by human mesenchymal stem cells through NF-,B,dependent pathways,ARTHRITIS & RHEUMATISM, Issue 3 2009N. Wehling Objective The differentiation of mesenchymal stem cells (MSCs) into chondrocytes provides an attractive basis for the repair and regeneration of articular cartilage. Under clinical conditions, chondrogenesis will often need to occur in the presence of mediators of inflammation produced in response to injury or disease. The purpose of this study was to examine the effects of 2 important inflammatory cytokines, interleukin-1, (IL-1,) and tumor necrosis factor , (TNF,), on the chondrogenic behavior of human MSCs. Methods Aggregate cultures of MSCs recovered from the femoral intermedullary canal were used. Chondrogenesis was assessed by the expression of relevant transcripts by quantitative reverse transcription,polymerase chain reaction analysis and examination of aggregates by histologic and immunohistochemical analyses. The possible involvement of NF-,B in mediating the effects of IL-1, was examined by delivering a luciferase reporter construct and a dominant-negative inhibitor of NF-,B (suppressor-repressor form of I,B [srI,B]) with adenovirus vectors. Results Both IL-1, and TNF, inhibited chondrogenesis in a dose-dependent manner. This was associated with a marked activation of NF-,B. Delivery of srI,B abrogated the activation of NF-,B and rescued the chondrogenic response. Although expression of type X collagen followed this pattern, other markers of hypertrophic differentiation responded differently. Matrix metalloproteinase 13 was induced by IL-1, in a NF-,B,dependent manner. Alkaline phosphatase activity, in contrast, was inhibited by IL-1, regardless of srI,B delivery. Conclusion Cell-based repair of lesions in articular cartilage will be compromised in inflamed joints. Strategies for enabling repair under these conditions include the use of specific antagonists of individual pyrogens, such as IL-1, and TNF,, or the targeting of important intracellular mediators, such as NF-,B. [source] Identification of the core element responsive to runt-related transcription factor 2 in the promoter of human type x collagen geneARTHRITIS & RHEUMATISM, Issue 1 2009Akiro Higashikawa Objective Type X collagen and runt-related transcription factor 2 (RUNX-2) are known to be important for chondrocyte hypertrophy during skeletal growth and repair and development of osteoarthritis (OA) in mice. Aiming at clinical application, this study was undertaken to investigate transcriptional regulation of human type X collagen by RUNX-2 in human cells. Methods Localization of type X collagen and RUNX-2 was determined by immunohistochemistry, and their functional interaction was examined in cultured mouse chondrogenic ATDC-5 cells. Promoter activity of the human type X collagen gene (COL10A1) was examined in human HeLa, HuH7, and OUMS27 cells transfected with a luciferase gene containing a 4.5-kb promoter and fragments. Binding to RUNX-2 was examined by electrophoretic mobility shift assay and chromatin immunoprecipitation. Results RUNX-2 and type X collagen were co-localized in mouse limb cartilage and bone fracture callus. Gain and loss of function of RUNX-2 revealed that RUNX-2 is essential for type X collagen expression and terminal differentiation of chondrocytes. Human COL10A1 promoter activity was enhanced by RUNX-2 alone and more potently by RUNX-2 in combination with the coactivator core-binding factor , in all 3 human cell lines examined. Deletion, mutagenesis, and tandem repeat analyses identified the core responsive element as the region between ,89 and ,60 bp (termed the hypertrophy box [HY box]), which showed specific binding to RUNX-2. Other putative RUNX-2 binding motifs in the human COL10A1 promoter did not respond to RUNX-2 in human cells. Conclusion Our findings indicate that the HY box is the core element responsive to RUNX-2 in human COL10A1 promoter. Studies on molecular networks related to RUNX-2 and the HY box will lead to treatments of skeletal growth retardation, bone fracture, and OA. [source] Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cellsARTHRITIS & RHEUMATISM, Issue 5 2008Michael B. Mueller Objective Mesenchymal stem cells (MSCs) are promising candidate cells for cartilage tissue engineering. Expression of cartilage hypertrophy markers (e.g., type X collagen) by MSCs undergoing chondrogenesis raises concern for a tissue engineering application for MSCs, because hypertrophy would result in apoptosis and ossification. To analyze the biologic basis of MSC hypertrophy, we examined the response of chondrifying MSCs to culture conditions known to influence chondrocyte hypertrophy, using an array of hypertrophy-associated markers. Methods Human MSC pellet cultures were predifferentiated for 2 weeks in a chondrogenic medium, and hypertrophy was induced by withdrawing transforming growth factor , (TGF,), reducing the concentration of dexamethasone, and adding thyroid hormone (T3). Cultures were characterized by histologic, immunohistochemical, and biochemical methods, and gene expression was assessed using quantitative reverse transcription,polymerase chain reaction. Results The combination of TGF, withdrawal, a reduction in the level of dexamethasone, and the addition of T3 was essential for hypertrophy induction. Cytomorphologic changes were accompanied by increased alkaline phosphatase activity, matrix mineralization, and changes in various markers of hypertrophy, including type X collagen, fibroblast growth factor receptors 1,3, parathyroid hormone,related protein receptor, retinoic acid receptor ,, matrix metalloproteinase 13, Indian hedgehog, osteocalcin, and the proapoptotic gene p53. However, hypertrophy was not induced uniformly throughout the pellet culture, and distinct regions of dedifferentiation were observed. Conclusion Chondrogenically differentiating MSCs behave in a manner functionally similar to that of growth plate chondrocytes, expressing a very similar hypertrophic phenotype. Under the in vitro culture conditions used here, MSC-derived chondrocytes underwent a differentiation program analogous to that observed during endochondral embryonic skeletal development, with the potential for terminal differentiation. This culture system is applicable for the screening of hypertrophy-inhibitory conditions and agents that may be useful to enhance MSC performance in cartilage tissue engineering. [source] Increased collagen and aggrecan degradation with age in the joints of Timp3,/, miceARTHRITIS & RHEUMATISM, Issue 3 2007Solmaz Sahebjam Objective To investigate the in vivo effect of an imbalance between metalloproteinases and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs), in mouse articular cartilage. Methods Hind joints of Timp3,/, and wild-type mice were examined by routine staining and by immunohistochemical analysis using antibodies specific for type X collagen and for the neoepitopes produced on proteolytic cleavage of aggrecan (, VDIPEN and , NVTEGE) and type II collagen. The neoepitope generated on cleavage of type II collagen by collagenases was quantitated in sera by enzyme-linked immunosorbent assay. Results Articular cartilage from Timp3 -knockout animals (ages ,6 months) showed reduced Safranin O staining and an increase in ,VDIPEN content compared with cartilage from heterozygous and wild-type animals. There was also a slight increase in , NVTEGE content in articular cartilage and menisci of Timp3,/, animals. Chondrocytes showed strong pericellular staining for type II collagen cleavage neoepitopes, particularly in the superficial layer, in knockout mice. Also, there was more type X collagen expression in the superficial zone of articular cartilage, especially around clusters of proliferating chondrocytes, in the knockout mice. More type II collagen cleavage product was found in the serum of Timp3,/, mice compared with wild-type animals. This increase was significant in 15-month-old animals. Conclusion These results indicate that TIMP-3 deficiency results in mild cartilage degradation similar to changes seen in patients with osteoarthritis, suggesting that an imbalance between metalloproteinases and TIMP-3 may play a pathophysiologic role in the development of this disease. [source] |