Type I Collagen mRNA (type + i_collagen_mrna)

Distribution by Scientific Domains


Selected Abstracts


Glycolic Acid Treatment Increases Type I Collagen mRNA and Hyaluronic Acid Content of Human Skin

DERMATOLOGIC SURGERY, Issue 5 2001
Eric F. Bernstein MD
Background. Chronic solar irradiation results in both morphologic and functional changes in affected skin. ,-hydroxy acids, such as glycolic acid, have been shown to improve photodamaged skin. Objective. To investigate alterations in collagen gene induction and epidermal and dermal hyaluronic acid production as a result of administered glycolic acid. Methods. In this study we compared collagen gene expression from skin biopsy specimens, and epidermal and dermal hyaluronic acid immunohistochemical staining between glycolic acid-treated and vehicle-treated skin. Forearm skin was treated with 20% glycolic acid lotion or a lotion vehicle control twice a day for 3 months. Results. Epidermal and dermal hyaluronic acid and collagen gene expression were all increased in glycolic acid-treated skin as compared to vehicle-treated controls. Conclusion. Our data suggest that epidermal and dermal remodeling of the extracellular matrix results from glycolic acid treatment. Longer treatment intervals may result in collagen deposition as suggested by the measured increase in mRNA. [source]


The hip joint: the fibrillar collagens associated with development and ageing in the rabbit

JOURNAL OF ANATOMY, Issue 1 2001
YVETTE S. BLAND
The fibrillar collagens associated with the articular cartilages, joint capsule and ligamentum teres of the rabbit hip joint were characterised from the 17 d fetus to the 2-y-old adult by immunohistochemical methods. Initially the putative articular cartilage contains types I, III and V collagens, but when cavitation is complete in the 25 d fetus, type II collagen appears. In the 17 d fetus, the cells of the chondrogenous layers express type I collagen mRNA, but not that of type II collagen. Types III and V collagens are present throughout life, particularly pericellularly. Type I collagen is lost. In all respects, the articular cartilage of the hip joint is similar to that of the knee. The joint capsule contains types I, III and V collagens. In the fetus the ligamentum teres contains types I and V collagens and the cells express type I collagen mRNA; type III collagen is confined mainly to its surface and insertions. After birth, the same distribution remains, but there is more type III collagen in the ligament, proper. The attachment to the cartilage of the head of the femur is marked only by fibres of type I collagen traversing the cartilage; the attachment cannot be distinguished in preparations localising types III and V collagens. The attachment to the bone at the lip of the acetabulum is via fibres of types I and V collagens and little type III is present. The ligament is covered by a sheath of types III and V collagens. Type II collagen was not located in any part of the ligamentum teres. The distribution of collagens in the ligamentum teres is similar to that in the collateral ligaments of the knee. Its insertions are unusual because no fibrocartilage was detected. [source]


Collagen gene expression and mechanical properties of intervertebral disc cell,alginate cultures

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 1 2001
Anthony E. Baer
Cells of the intervertebral disc have a limited capacity for matrix repair that may contribute to the onset and progression of degenerative disc changes. In this study, the biosynthetic capacity of cells isolated from specific regions of the porcine intervertebral disc was evaluated in vitro. Using a competitive reverse transcription-polymerase chain reaction technique, gene expression levels for types I and II collagen were quantified in cells cultured for up to 21 d in a three-dimensional alginate culture system and compared to levels obtained for cells in vivo. The mechanical properties of cell-alginate constructs were measured in compression and shear after periods of culture up to 16 weeks. Cells from the anulus fibrosus expressed the most type I collagen mRNA in vivo and in vitro, while cells from the transition zone expressed the most type II collagen mRNA in vivo and in vitro. Mechanical testing results indicate that a mechanically functional matrix did not form at any time during the culture period; rather, decreases of up to 50% were observed in the compressive and shear moduli of the cell,alginate constructs compared to alginate with no cells. Together with results of prior studies, these results suggest that intervertebral disc cells maintain characteristics of their phenotype when cultured in alginate, but the molecules they synthesize are not able to form a mechanically functional matrix in vitro. © 2001 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source]


The effect of narrowband ultraviolet B on the expression of matrix metalloproteinase-1, transforming growth factor-,1 and type I collagen in human skin fibroblasts

CLINICAL & EXPERIMENTAL DERMATOLOGY, Issue 2 2007
C. P. Choi
Summary Background., Ultraviolet (UV) irradiation induces chronic skin diseases, such as skin cancer and photoageing, and the mechanisms of this skin damage are associated with the upregulation of matrix metalloproteinases (MMPs) and decreased collagen synthesis. Narrowband ultraviolet B (NB-UVB) radiation is a relatively new treatment modality for vitiligo and psoriasis. However, the mechanism of NB-UVB action on photoageing is not completely understood. Aims., We investigated the effects of NB-UVB on the expression of MMP-1, transforming growth factor (TGF)-,1 and type I collagen in cultured human skin fibroblasts. Methods., Cultured human fibroblasts were irradiated with either NB-UVB (50,800 mJ/cm2) or broadband UVB (BB-UVB; 25 mJ/cm2). The expression of MMP-1, TGF-,1 and type I collagen mRNA was determined by reverse-transcription PCR. Expression of MMP-1 and TGF-,1 protein was determined by ELISA and that of type I collagen by Western blotting. Results., NB-UVB induced the expression of MMP-1 and reduced the expression of TGF-,1 and type I collagen at the mRNA and protein levels in a dose-dependent manner. The expression of type I collagen protein decreased more after irradiation with 25 mJ/cm2 of BB-UVB than 400 mJ/cm2 of NB-UVB. Conclusions., This study indicates that NB-UVB irradiation reduces type I collagen synthesis in human skin fibroblasts by inhibiting TGF-,1 expression and stimulating the release of MMP-1. It also suggested that the photoageing-related effects of NB-UVB are weaker than those of BB-UVB in vitro. [source]