Home About us Contact | |||
Type 1 Collagen (type 1 + collagen)
Selected AbstractsLocal biochemical markers of bone turnover: relationship to subsequent density of healing alveolar bone defectsJOURNAL OF CLINICAL PERIODONTOLOGY, Issue 3 2004Richard A. Reinhardt Abstract Objectives: This pilot study was designed to test whether biochemical markers of bone turnover in washes of periosteal or trabecular alveolar bone surfaces could be correlated with increases in bone density of an adjacent healing implant socket. Methods: Ten subjects had a canula inserted into the alveolar crest and sterile phosphate-buffered saline was washed over the periosteal and trabecular surfaces and collected. Surgical flaps were reflected, 5 mm diameter bone cores were removed from the bone wash site, and standardized radiographs were taken. The sites were allowed to heal for 12 weeks, and radiographs were repeated. Bone washes of the healing sites were also collected after 2 and 12 weeks. Washes were analysed for bone turnover markers osteocalcin (OC; radioimmunoassay) and C-terminal telopeptide of Type 1 collagen (ICTP; enzyme-linked immunosorbent assay (ELISA)), and blood component albumin (ALB; ELISA). Changes in bone density during healing were determined by radiographic absorptiometry. Results: OC/ALB and ICTP/ALB ratios were higher for trabecular than periosteal washes at baseline (p0.01). Trabecular OC/ALB and ICTP/ALB were inversely correlated with increasing bone density of the healing bone core socket (r=,0.72, p=0.03; Pearson's correlation coefficient). Conclusions: Biochemical markers of bone turnover in bone washes of specific alveolar bone sites may prove helpful in predicting how the bone density will increase around healing dental implants. [source] Bone mineral density in familial amyloid polyneuropathy and in other neuromuscular disordersEUROPEAN JOURNAL OF NEUROLOGY, Issue 6 2005I. M. Conceição Neuromuscular diseases are a known risk factor for immobilization-induced osteoporosis. The aim of the study was to analyse bone mineral density (BMD) in patients with familial amyloid polyneuropathy (FAP) type I (Val30 Met) and to compare them with a population of patients with other neuromuscular disorders. We studied 24, ambulatory, neuromuscular patients, all men and premenopausal women. We included 12 FAP patients (GI) and 12 patients with other disorders (GII). Clinical data included age, sex, height, weight, alcohol intake, smoking, calcium intake, physical activity and history of fractures. Serum and urinary calcium, osteocalcin, bone alkaline phosphatase, parathyroid hormone, thyroid stimulating hormone and urinary N-telopeptide cross-linked type 1 collagen were determined in all patients. Bone mineral density of lumbar spine, hip and wrist were determined by dual energy X-ray absorptiometry scan. No statistical differences were found in clinical or analytic data between the two groups, except for body mass index and calciuria, which were lower in GI. In GI, 54.5% were osteoporotic, against 23.1% in GII (P = 0.04). Bone mineral density was lower in GI when compared with GII, and tended to decrease with disease duration. Decreased BMI and the early autonomic involvement in GI probably explain the results. The prevention and early treatment of osteoporosis, in FAP patients should be considered a priority. [source] Head-to-head comparison of risedronate vs. teriparatide on bone turnover markers in women with postmenopausal osteoporosis: a randomised trialINTERNATIONAL JOURNAL OF CLINICAL PRACTICE, Issue 6 2008A. D. Anastasilakis Summary Aims:, We aimed to compare the effect of risedronate (RIS) and teriparatide (TPTD) (recombinant human parathyroid hormone 1,34) on bone turnover markers in women with postmenopausal osteoporosis. Methods:, Forty-four Caucasian women (age 65.1 ± 1.6 years) with postmenopausal osteoporosis were randomly assigned to receive either RIS 35 mg once weekly (n = 22) or TPTD 20 ,g once daily (n = 22) for 12 months. Serum N-terminal propeptide of type 1 collagen (P1NP), C-terminal telopeptide of type 1 collagen (CTx), total alkaline phosphatase (ALP) and intact parathyroid hormone (iPTH) were obtained from all women before, 3 and 6 months after treatment initiation. Lumbar spine bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry before and 12 months after treatment initiation. Results:, P1NP, CTx and total ALP levels decreased in RIS group (p < 0.001) and increased in TPTD group (p < 0.001) throughout the treatment. iPTH increased significantly in RIS group (p < 0.05) and decreased in TPTD group (p < 0.001). Finally, lumbar spine BMD increased significantly in both RIS (p = 0.003) and TPTD groups (p < 0.001) without significant differences between them. Conclusions:, Our data suggest that both serum P1NP and CTx are reliable markers of RIS and TPTD action in women with postmenopausal osteoporosis. In a similar way, serum total ALP can be used as an alternative marker for monitoring both RIS and TPTD action, while iPTH can be used only for TPTD-treated women. The increase in P1NP and CTx after 3 months of treatment with RIS or TPTD can predict the increase in BMD after 12 months of treatment. [source] Perspective: Assessing the Clinical Utility of Serum CTX in Postmenopausal Osteoporosis and Its Use in Predicting Risk of Osteonecrosis of the Jaw,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2009Sanford Baim Abstract Bone turnover markers (BTMs) have become increasingly important in the management of postmenopausal osteoporosis (PMO). In bisphosphonate-treated women with PMO, BTMs can provide early indications of treatment efficacy, are predictors of BMD response and fracture risk reduction, and are potentially useful for monitoring patient compliance. The bone resorption marker serum C-telopeptide cross-link of type 1 collagen (sCTX) has shown high sensitivity and specificity for the detection of increased bone resorption. Recently, sCTX has been singled out as a potential indicator of risk of osteonecrosis of the jaw (ONJ) in patients receiving oral bisphosphonates who require oral surgery. However, whether BTMs are capable of predicting ONJ risk and whether sCTX is usable for this purpose are controversial questions. This article presents an overview of the current literature regarding critical issues affecting the clinical utility of BTMs (including variability and reference ranges) and the current applications of BTMs in PMO management, with a focus on sCTX. Last, the appropriateness of using sCTX to predict ONJ risk in women receiving oral bisphosphonates for PMO is evaluated. [source] Effect of Blockade of TNF-, and Interleukin-1 Action on Bone Resorption in Early Postmenopausal Women,,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2007Natthinee Charatcharoenwitthaya Abstract After acute estrogen withdrawal in postmenopausal women, administration of anakinra or etanercept, specific blockers of IL-1 and TNF-,, respectively, reduced the rise in bone resorption markers to about one half of that in controls. This is consistent with an important role for these immune cytokines in mediating the effect of estrogen deficiency on bone. Introduction: Studies in rodents have implicated increased production of interleukin (IL)-1, and TNF-, as mediators of bone loss after ovariectomy, but their roles are unclear in humans whose immune system differs markedly from that of rodents. Materials and Methods: We administered transdermal estradiol, 0.1 mg/d, for 60 days to 42 early postmenopausal women. Estrogen treatment was discontinued, and subjects were randomly assigned to intervention groups receiving 3 wk of injections with 0.9% saline, anakinra 100 mg/d, or etanercept 25 mg/twice weekly. Bone turnover was assessed by measuring serum carboxyl-terminal telopeptide of type 1 collagen (CTX) and amino-terminal telopeptide of type 1 collagen (NTX), markers for bone resorption, and serum amino-terminal propeptide of type 1 collagen (P1NP), a marker for bone formation. Results were expressed as percent change in markers from baseline (last 2 days of estrogen treatment and days 20 and 21 of intervention). Results: The percent changes from baseline during intervention for serum CTX, urine NTX, and serum PINP, respectively, were 43.3 ± 8.0%, 12.0 ± 7.1%, and ,41.0 ± 2.5% for the control group; 25.9 ± 6.3%, 9.5 ± 4.0%, and ,37.8 ± 3.0% for the anakinra group; and 21.7 ± 5.0%, 0.32 ± 3.82%, and ,34.5 ± 3.9% for the etanercept group. Compared with the control group, the blunting of the increase in serum CTX fell just below the level of significance (p = 0.10) after anakinra treatment, whereas the blunting of the increase in serum CTX (p = 0.034) and in urine NTX (p = 0.048) were significant after etanercept treatment. Other changes were not significant. Conclusions: The data are consistent with a role for TNF-,, and possibly for IL-1,, in mediating increased bone resorption during estrogen deficiency in women. Although either cytokine blocker reduced serum CTX by about one half, the effect of combined blockade could not be tested because of concerns about toxicity. The data do not exclude direct or indirect contributory roles for RANKL or for other cytokines. [source] Pretreatment Levels of Bone Turnover and the Antifracture Efficacy of Alendronate: The Fracture Intervention TrialJOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2006Douglas C Bauer MD Abstract The influence of pretreatment bone turnover on alendronate efficacy is not known. In the FIT, we examined the effect of pretreatment bone turnover on the antifracture efficacy of daily alendronate given to postmenopausal women. The nonspine fracture efficacy of alendronate was significantly greater among both osteoporotic and nonosteoporotic women with higher baseline levels of the bone formation marker PINP. Introduction: Previous trials have shown that high bone turnover is associated with greater increases in BMD among bisphosphonate-treated women. The influence of pretreatment bone turnover levels on antifracture efficacy has not been well studied. Materials and Methods: We randomized women 55,80 years of age with femoral neck BMD T scores , ,1.6 to alendronate (ALN), 5,10 mg/day (n = 3105), or placebo (PBO; n = 3081). At baseline, 3495 women were osteoporotic (femoral neck BMD T score , ,2.5 or prevalent vertebral fracture), and 2689 were not osteoporotic (BMD T score > ,2.5 and no prevalent vertebral fracture). Pretreatment levels of bone-specific alkaline phosphatase (BSALP), N-terminal propeptide of type 1 collagen (PINP), and C-terminal cross-linked telopeptide of type 1 collagen (sCTx) were measured in all participants using archived serum (20% fasting). The risk of incident spine and nonspine fracture was compared in ALN- and PBO-treated subjects stratified into tertiles of baseline bone marker level. Results and Conclusions: During a mean follow-up of 3.2 years, 492 nonspine and 294 morphometric vertebral fractures were documented. Compared with placebo, the reduction in nonspine fractures with ALN treatment differed significantly among those with low, intermediate, and high pretreatment levels of PINP levels (p = 0.03 for trend). For example, among osteoporotic women in the lowest tertile of pretreatment PINP (<41.6 ng/ml), the ALN versus PBO relative hazard for nonspine fracture was 0.88 (95% CI: 0.65, 1.21) compared with a relative hazard of 0.54 (95% CI: 0.39, 0.74) among those in the highest tertile of PINP (>56.8 ng/ml). Results were similar among women without osteoporosis at baseline. Although they did not reach statistical significance, similar trends were observed with baseline levels of BSALP. Conversely, spine fracture treatment efficacy among osteoporotic women did not differ significantly according to pretreatment marker levels. Spine fracture treatment efficacy among nonosteoporotic women was related to baseline BSALP (p = 0.05 for trend). In summary, alendronate nonspine fracture efficacy is greater among both osteoporotic and nonosteoporotic women with high pretreatment PINP. If confirmed in other studies, these findings suggest that bisphosphonate treatment may be most effective in women with elevated bone turnover. [source] Biochemical Markers as Predictors of Rates of Bone Loss After MenopauseJOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2000A. Rogers Abstract Biochemical markers of bone turnover may correlate with rates of bone loss in a group of postmenopausal women, but it is uncertain how useful they are in predicting rates of bone loss in the individual. The aim of this study was to determine the value of measurements of biochemical markers for the prediction of rates of bone loss in the individual. We studied 60 postmenopausal women (ages, 49,62 years), 43 of whom had gone through a natural menopause 1,20 years previously and 17 of whom had undergone hysterectomy 3,22 years ago. Lumbar spine bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry (DXA) over 2,4 years. Bone formation markers (bone-specific alkaline phosphatase [ibAP] and amino terminal of type I collagen [PINP] and osteocalcin [OC]) were measured in serum. Bone resorption markers (N-telopeptide of type 1 collagen [NTx] and immunoreactive free deoxypyridinoline [iFDpd]) were measured in urine and corrected for creatinine (Cr). Rates of bone loss were calculated as percent change per year. We found significant negative correlations (Spearman rank) between all measured biochemical markers and rate of change in bone density with r values ranging from ,0.35 to ,0.52. When markers and rates of bone loss were divided into tertiles, prediction of bone loss in an individual was poor (, < 0.2). There was an exponential relationship between rate of bone loss and years since menopause (YSM) in the 43 women having a natural menopause (r2 = 0.44; p = 0.008) indicating higher rates of loss in the early postmenopausal period. Levels of NTx, iFDpd, and PINP also showed a significant negative correlation with YSM. We conclude that there is a strong relationship between rates of spinal bone loss and levels of bone turnover markers. Although this is a small study, the results also suggest that using DXA measurements of the lumbar spine as the "gold standard," it is not possible to use biochemical markers to predict rate of bone loss in the individual. [source] A Detailed Assessment of Alterations in Bone Turnover, Calcium Homeostasis, and Bone Density in Normal PregnancyJOURNAL OF BONE AND MINERAL RESEARCH, Issue 3 2000A. J. Black Abstract The effects of pregnancy on bone turnover and the potential risk of developing an osteoporotic fracture in pregnancy are controversial. Utilizing biochemical markers of bone formation and resorption and dual-energy X-ray absorptiometry (DEXA), bone turnover before, during, and after pregnancy was studied in detail. Ten women (mean age 30 years; range 23,40) were recruited. Prepregnancy data were obtained and then a review was performed at 2-week intervals, once pregnancy was confirmed, until 14 weeks of gestation and thereafter monthly until term. Bone mineral density (BMD) was estimated by DEXA scanning of hip, spine, and forearm preconception and postpartum. In addition, BMD of the forearm at 14 weeks and 28 weeks gestation was obtained. All pregnancies had a successful outcome. Urinary free pyridinium cross-links, free pyridinoline (fPyr) and free deoxypyridinoline (fDPyr), were normal prepregnancy (mean [±SD]) 14.6 nmol/mmol (1.8) and 5.0 nmol/mmol (1.0) creat, respectively. By 14 weeks, they had increased to 20.8 nmol/mmol (4.3) and 6.1 nmol mmol (1.4) (both p < 0.02) and by 28 weeks to 26.3 nmol/mmol (5.6) and 7.4 nmol/mmol (1.6) (both p < 0.01). The ratio of fPyr to fDPyr remained constant. A similar significant increase was observed in N-telopeptide (NTx). Bone formation was assessed by measurement of carboxy-terminal propeptide of type 1 collagen (P1CP) and bone-specific alkaline phosphatase (BSAP). Neither were altered significantly before 28 weeks, but subsequently mean P1CP increased from 110 ,g/liter (23) to 235 ,g/liter (84) at 38 weeks and mean BSAP increased from 11.1 U/liter (5.0) to 28.6 U/liter (11.1) (p < 0.01 for both variables). Lumbar spine (L1,L4) BMD decreased from a prepregnancy mean of 1.075 g/cm (0.115) to 1.054 g/cm2 (0.150) postpartum (p < 0.05). Total hip BMD decreased from a prepregnancy mean of 0.976 g/cm2 (0.089) to 0.941 g/cm2 (0.097) (p < 0.05). Forearm BMD at midradius, one-third distal and ultradistal decreased but did not reach statistical significance. As assessed by these bone markers, in the first 2 trimesters of pregnancy, bone remodeling is uncoupled with a marked increase in bone resorption. A corresponding increase in formation markers is not observed until the third trimester. Spinal BMD exhibits a significant decrease from prepregnancy to the immediate postpartum period with a mean reduction in BMD of 3.5% in 9 months. [source] Markers of bone destruction and formation and periodontitis in type 1 diabetes mellitusJOURNAL OF CLINICAL PERIODONTOLOGY, Issue 8 2009David F. Lappin Abstract Aim: To determine plasma concentrations of bone metabolism markers in type 1 diabetes mellitus patients and non-diabetic and to evaluate the influence of periodontitis on biomarkers of bone formation in these patient groups. Methods: Plasma concentrations of receptor activator of nuclear factor- ,B ligand (RANKL), osteoprotegerin (OPG), C-terminal telopeptide of type 1 collagen and osteocalcin were measured in type 1 diabetes mellitus patients (n=63) and non-diabetics (n=38) who were also subdivided on the basis of their periodontal status. Results: Diabetics had significantly lower osteocalcin concentrations, lower RANKL to OPG ratios and higher OPG concentrations (as shown by other researchers) than non-diabetics. The ratio of RANKL to OPG was altered by the periodontal status. Osteocalcin had a negative correlation and OPG a positive correlation with the percentage of glycated haemoglobin in the blood. Conclusion: Because, osteocalcin, a biomarker of bone formation, is lower in patients with periodontitis and in patients with type 1 diabetes mellitus with and without periodontitis than in non-diabetics without periodontitis, this might indicate that diabetics are less able to replace bone lost during active bursts of periodontitis and explain the greater severity of disease seen in studies of patients with diabetes. [source] An open-label, phase 2 trial of denosumab in the treatment of relapsed or plateau-phase multiple myeloma,,AMERICAN JOURNAL OF HEMATOLOGY, Issue 10 2009Ravi Vij RANKL is a key mediator of osteoclast differentiation, activation, and survival. Preclinical data suggest that aberrant production and activation of osteoclasts may influence proliferation of multiple myeloma (MM) cells in the bone marrow. Reports have also shown that inhibiting RANKL may have a direct effect on RANK-expressing myeloma cells and a therapeutic role in treating the disease. In mouse myeloma models, inhibition of RANKL led to reduced serum paraprotein levels and tumor burden. Based on this hypothesis, this proof-of-concept, single-arm study investigated whether RANKL inhibition with denosumab could reduce serum M-protein levels in relapsed or plateau-phase myeloma subjects. All subjects received denosumab monthly, with loading doses on days 8 and 15 of month one, until disease progression or subject discontinuation. Results of this ongoing study demonstrated that no subjects in either cohort met the protocol-defined objective response criteria of complete response (CR) or partial response (PR), but that denosumab effectively inhibited the RANKL pathway regardless of previous exposure to bisphosphonates, as evidenced by suppressed levels of the bone turnover marker, serum C-terminal telopeptide of type 1 collagen (sCTx). Eleven (21%) subjects who relapsed within 3 months before study entry maintained stable disease for up to 16.5 months. Nineteen (46%) subjects with plateau-phase myeloma maintained stable disease for up to 18.3 months. The adverse event (AE) profile for denosumab and its dosing schedule in these populations was consistent with that for advanced cancer patients receiving systemic therapy. Additional controlled clinical studies of denosumab in subjects with both relapsed and plateau-phase MM are warranted. Am. J. Hematol. 2009. © 2009 Wiley-Liss, Inc. [source] Keloid-derived fibroblasts show increased secretion of factors involved in collagen turnover and depend on matrix metalloproteinase for migrationBRITISH JOURNAL OF DERMATOLOGY, Issue 2 2005M. Fujiwara Summary Background, ,A keloid is a specific skin lesion that expands beyond the boundaries of the original injury as it heals. Histologically, it is characterized by the excessive accumulation of collagen. However, the reasons for the expansion and the invasive nature of keloids remain unknown. Objectives, We evaluated collagen degradation and migration by cultured keloid fibroblasts based on the assumption that these variables were of functional relevance to the expanding and invasive nature of keloid lesions. Methods, Collagen production was investigated by the detection of type 1 collagen (procollagen type 1C peptide: P1P). Matrix metalloproteinase (MMP)-1 (interstitial collagenase) and MMP-2 (gelatinase-A), were investigated as elements of the collagen degradation system. Enzyme immunoassays were performed to measure the production of P1P, MMP-1, MMP-2, and tissue inhibitor of metalloproteinase (TIMP)-1. To assess the production of MMP-2 its gelatinolytic activity was measured by zymography using gelatin-containing gels. The participation of transforming growth factor-,1 (TGF-,1) in the production and degradation of collagen was also investigated. Finally, the migratory activity of keloid fibroblasts was evaluated using a colony dispersion assay. Results, The production of type 1 collagen, MMP-1, MMP-2, and TIMP-1 by keloid fibroblasts was 3-fold, 6-fold, 2·4-fold, and 2-fold greater than that of normal dermal fibroblasts, respectively. Production of P1P was increased when TGF-,1 was added to cultures of keloid fibroblasts, while it was decreased when anti-TGF-,1 antibody was added to the cultures. In contrast, the production of MMP-1 was decreased by the addition of TGF-,1 to cultured keloid fibroblasts, while it was increased when anti-TGF-,1 antibody was added to the cultures. The production of MMP-2 increased after treatment with TGF-,1, but did not change significantly when anti-TGF-,1 antibody was added to the cultures. Production of TIMP-1 did not change significantly when either TGF-,1 or anti-TGF-,1 antibody was added to the cultures. Keloid fibroblasts showed a 2·5-fold increase of migratory activity compared with normal dermal fibroblasts, while the migratory activity of these fibroblasts was reduced to the control level by treatment with a broad-spectrum MMP inhibitor (GM 6001). Conclusions, Cultured keloid fibroblasts showed increased production of collagen and MMPs, and TGF-,1 played a role in this regulation of production. In addition, increased production of MMPs had a role in the high migratory activity of cultured keloid fibroblasts. [source] |