Beat Cycle (beat + cycle)

Distribution by Scientific Domains


Selected Abstracts


Evidence for axonemal distortion during the flagellar beat of Chlamydomonas

CYTOSKELETON, Issue 8 2007
Charles B. Lindemann
Abstract In order to understand the working mechanism that governs the flagellar beat it is essential to know if the axoneme undergoes distortion during the course of the beat cycle. The rapid fixation method employed by Mitchell was able to preserve the waveform of Chlamydomonas flagella much as it appears during normal flagellar beating [Mitchell, Cell Motil Cytoskeleton 2003;56:120,129]. This conservation of the waveform suggests that the stress responsible for the production of bending is also trapped by the fixation procedure. Longitudinal sections of these well-preserved flagella were used to document variations in the relative axonemal diameter. Sections aligned to the plane of bending, showing both the central pair microtubules and outer doublets, were examined for this purpose. Micrographs were selected that continuously showed both the outer doublets and the central pair from a straight region to a curved region of the flagellum. Axoneme diameters measured from these select micrographs showed an increase in relative diameter that averaged 39 nm greater at the crest of the bent region. This constituted a 24% increase in the axoneme diameter in the bends. The transverse stress acting across the axoneme during bending was calculated from the Geometric Clutch computer model for a simulated Chlamydomonas -like flagellar beat. If we assume that this is representative of the transverse stress acting in a real flagellum, then the Young's modulus of the intact axoneme is ,0.02 MPa. The possibility that the distortion of the axoneme during the beat could play a significant role in regulating dynein function is discussed. Cell Motil. Cytoskeleton 2007. © 2007 Wiley-Liss, Inc. [source]


An electro-optic monitor of the behavior of Chlamydomonas reinhardtii cilia

CYTOSKELETON, Issue 2 2005
Keith Josef
Abstract The unicellular green alga Chlamydomonas reinhardtii steers through water with a pair of cilia (eukaryotic flagella). Long-term observation of the beating of its cilia with controlled stimulation is improving our understanding of how a cell responds to sensory inputs. Here we describe how to record ciliary motion continuously for long periods. We also report experiments on the network of intracellular signaling that connects the environment inputs with response outputs. Local spatial changes in ciliary response on the time scale of the underlying biochemical dynamics are observed. Near-infrared light monitors the cells held by a micropipette. This condition is tolerated well for hours, not interfering with ciliary beating or sensory transduction. A computer integrates the light stimulation of the eye of Chlamydomonas with the ciliary motion making possible long-term correlations. Measures of ciliary responses include the beating frequency, stroke velocity, and stroke duration of each cilium, and the relative phase of the cis and trans cilia. The stationarity and dependence of the system on light intensity was investigated. About 150,000,000 total beat cycles and up to 8 h on one cell have been recorded. Each beat cycle is resolved so that each asynchronous beat is detected. Responses extend only a few hundred milliseconds, but there is a persistence of momentary changes that last much longer. Interestingly, we see a response that is linear with absolute light intensity as well as different kinds of response that are clearly nonlinear, implying two signaling pathways from the cell body to the cilia. Cell Motil. Cytoskeleton 61:83,96, 2005. © 2005 Wiley-Liss, Inc. [source]


Microtubule displacements at the tips of living flagella

CYTOSKELETON, Issue 3 2002
Geraint G. Vernon
Abstract We have observed that the flagellar axoneme of the Chinese hamster spermatozoon undergoes periodic changes in length at the same frequency as the flagellar beat. The amplitude of the length oscillation recorded at the tip is maximally about 0.5 ,m or 0.2% of the total length. In some favourable cells, it was possible to see the opposing "halves" of the axoneme moving at the tip in a reciprocating manner and 180° out-of-phase. This behaviour, when analysed quantitatively, is broadly consistent with predictions made from the sliding-doublet theory of ciliary and flagellar motility and thus it constitutes an additional verification of the theory, for the first time in a living cell. However, on close examination, there is a partial mismatch between the timing of the length oscillation and the phase of the beat cycle. We deduce from this that there is some sliding at the base of the flagellum, sliding that is accommodated by elastic compression of the connecting piece. Micrographic evidence for such compression is presented. Cell Motil. Cytoskeleton 52:151,160, 2002. © 2002 Wiley-Liss, Inc. [source]


Comparative and functional morphology of wing coupling structures in Trichoptera: Annulipalpia

JOURNAL OF MORPHOLOGY, Issue 2 2010
Ian C. StocksArticle first published online: 20 AUG 200
Abstract Several orders of morphologically four-winged insects have evolved mechanisms that enforce a union between the mesothoracic and metathoracic wings (forewings and hindwings) during the wing beat cycle. Such mechanisms result in a morphologically tetrapterous insect flying as if it were functionally dipterous, and these mechanisms have been described for several insect orders. The caddisfly suborders Annulipalpia and Integripalpia (Trichoptera) each have evolved a wing coupling apparatus, with at least three systems having evolved within the suborder Annulipalpia. The comparative and inferred functional morphology of the putative wing coupling mechanisms is described for the annulipalpian families Hydropsychidae (subfamilies Macronematinae and Hydropsychinae), Polycentropodidae and Ecnomidae, and a novel form-functional complex putatively involved with at-rest forewing-forewing coupling is described for Hydropsychidae: Smicrideinae. It is proposed that the morphology of the wing coupling apparatuses of Hydropsychinae and Macronematinae are apomorphies for those clades. J. Morphol. 2009. © 2009 Wiley-Liss, Inc. [source]


An electro-optic monitor of the behavior of Chlamydomonas reinhardtii cilia

CYTOSKELETON, Issue 2 2005
Keith Josef
Abstract The unicellular green alga Chlamydomonas reinhardtii steers through water with a pair of cilia (eukaryotic flagella). Long-term observation of the beating of its cilia with controlled stimulation is improving our understanding of how a cell responds to sensory inputs. Here we describe how to record ciliary motion continuously for long periods. We also report experiments on the network of intracellular signaling that connects the environment inputs with response outputs. Local spatial changes in ciliary response on the time scale of the underlying biochemical dynamics are observed. Near-infrared light monitors the cells held by a micropipette. This condition is tolerated well for hours, not interfering with ciliary beating or sensory transduction. A computer integrates the light stimulation of the eye of Chlamydomonas with the ciliary motion making possible long-term correlations. Measures of ciliary responses include the beating frequency, stroke velocity, and stroke duration of each cilium, and the relative phase of the cis and trans cilia. The stationarity and dependence of the system on light intensity was investigated. About 150,000,000 total beat cycles and up to 8 h on one cell have been recorded. Each beat cycle is resolved so that each asynchronous beat is detected. Responses extend only a few hundred milliseconds, but there is a persistence of momentary changes that last much longer. Interestingly, we see a response that is linear with absolute light intensity as well as different kinds of response that are clearly nonlinear, implying two signaling pathways from the cell body to the cilia. Cell Motil. Cytoskeleton 61:83,96, 2005. © 2005 Wiley-Liss, Inc. [source]