Bead Surface (bead + surface)

Distribution by Scientific Domains


Selected Abstracts


Colonic delivery of ,-lactamases does not affect amoxicillin pharmacokinetics in rats

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 5 2008
Sandrine Bourgeois
Abstract Pectin beads containing ,-lactamases were designed for the hydrolysis of colonic residual antibiotics responsible for the emergence of resistance. Beads were prepared by ionotropic gelation in CaCl2 and stabilized by coating with polyethylenimine (PEI) to resist disintegration in the upper GI tract. Particle characterization showed that dried beads had a diameter around 1 mm independently of the presence of PEI. Seven to ten percent (w/w) of PEI was located on bead surface forming a coating layer as observed by scanning electron microscopy. PEI improved considerably bead stability in simulated intestinal medium while affecting slightly the encapsulation efficiency of active ,-lactamases. Coated beads were able to preserve ,-lactamases from premature leakage in the upper GIT whereas, in simulated colonic medium, pectinases induced matrix degradation and reduction of ,-lactamase content especially in beads coated in a 0.8% PEI solution. Finally, the pharmacokinetics of amoxicillin in rat after oral administration was not modified by the co-administration of beads containing ,-lactamases. In conclusion, PEI-coated beads are stable in the upper GIT but remain sensitive to the action of pectinolytic enzymes allowing release of ,-lactamases in a colonic medium without modification of the absorption of a ,-lactam antibiotic when co-administered with loaded beads. 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97: 1853,1863, 2008 [source]


Development and Applications of Topologically Segregated Bilayer Beads in One-bead One-compound Combinatorial Libraries

MOLECULAR INFORMATICS, Issue 10 2005
Ruiwu Liu
Abstract Using a "split,mix" synthesis approach, "One-Bead One-Compound" (OBOC) combinatorial libraries can be generated such that each bead displays only one chemical entity. Tens of thousands to millions of compound-beads can be screened concurrently using a variety of biochemical and cell-based screening methods. Positive beads are then physically isolated for structure determination. Peptide beads or peptoid beads consisting of ,-amino acids and with a free N -terminus can be routinely sequenced by an automatic microsequencer using Edman chemistry. Libraries with N -terminally blocked peptides, peptides with unsequenceable building blocks, or small molecules require encoding. To fully exploit the OBOC combinatorial library methods, we have developed topologically segregated bilayer beads. Such bilayer beads allow us to prepare library compound on the outer layer of each bead and the coding tags in the bead interior. In addition, we can use these bilayer beads to prepare OBOC combinatorial libraries that are down-substituted on the bead surface but fully substituted in the bead interior. This configuration enables one to screen at a much higher stringency and yet have enough peptides or coding tags retained in the bead interior for structure determination. [source]


Glass bead grafting with poly(carboxylic acid) polymers and maleic anhydride copolymers

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 2 2008
H. Zengin
Abstract Glass beads were etched with acids and bases to increase the surface porosity and the number of silanol groups that could be used for grafting materials to the surfaces. The pretreated glass beads were functionalized using 3-aminopropyltriethoxysilane (APS) coupling agent and then further chemically modified by reacting the carboxyl groups of carboxylic acid polymers with the amino groups of the pregrafted APS. Several carboxylic acid polymers and poly(maleic anhydride) copolymers, such as poly(acrylic acid) (PAA), poly(methacrylic acid) (PMA), poly(styrene-alt-maleic anhydride) (PSMA), and poly(ethylene-alt-maleic anhydride) (PEMA) were grafted onto the bead surface. The chemical modifications were investigated and characterized by FT-IR spectroscopy, particle size analysis, and tensiometry for contact angle and porosity changes. The amount of APS and the different polymer grafted on the surface was determined from thermal gravimetric analysis and elemental analysis data. Spectroscopic studies and elemental analysis data showed that carboxylic acid polymers and maleic anhydride copolymers were chemically attached to the glass bead surface. The improved surface properties of surface modified glass beads were determined by measuring water and hexane penetration rates and contact angle. Contact angles increased and porosity decreased as the molecular weights of the polymer increased. The contact angles increased with the hydrophobicity of the attached polymer. The surface morphology was examined by scanning electron microscopy (SEM) and showed an increase in roughness for etched glass beads. Copyright 2007 John Wiley & Sons, Ltd. [source]