Beach Sands (beach + sand)

Distribution by Scientific Domains


Selected Abstracts


Predictions of large stress reversals in true triaxial tests on cross-anisotropic sand

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 8 2009
Suresh K. Gutta
Abstract A rotational kinematic hardening constitutive model with the capability of predicting the behavior of soil during three-dimensional stress reversals has been developed. An existing elasto-plastic constitutive model, the Single Hardening Model, utilizing isotropic hardening serves as the basic framework in these formulations. The framework of the kinematic hardening model was discussed in a companion paper. The previously proposed cross-anisotropic Single Hardening Model is added to the present kinematic hardening mechanism to capture inherent anisotropy of sands in addition to the stress reversals. This model involves 13 parameters, which can be determined from simple laboratory experiments, such as isotropic compression, drained triaxial compression and triaxial extension tests. The results from a series of true triaxial tests with large three-dimensional stress reversals performed on medium dense cross-anisotropic Santa Monica Beach sand are employed for comparison with predictions. Copyright 2008 John Wiley & Sons, Ltd. [source]


Water quality and hydrogeochemical characteristics of the River Buyukmelen, Duzce, Turkey

HYDROLOGICAL PROCESSES, Issue 20 2005
Rustem Pehlivan
Abstract The River Buyukmelen is located in the province of Duzce in northwest Turkey and its water basin is approximately 470 km2. The Aksu, Kucukmelen and Ugursuyu streams flow into the River Buyukmelen. It flows into the Black Sea with an output of 44 m3 s,1. The geological succession in the basin comprises limestone and dolomitic limestone of the Y,lanl, formation, sandstone, clayey limestone and marls of the Akveren formation, clastics and volcano-clastics of the Caycuma formation, and cover units comprised of river alluvium, lacutrine sediments and beach sands. The River Buyukmelen is expected to be a water source that can supply the drinking water needs of Istanbul until 2040; therefore, it is imperative that its water quality be preserved. The samples of rock, soil, stream water, suspended, bed and stream sediments and beach sand were collected from the Buyukmelen river basin. They were examined using mineralogical and geochemical methods. The chemical constituents most commonly found in the stream waters are Na+, Mg2+, SO2,4, Cl, and HCO3, in the Guz stream water, Ca2+ in the Abaza stream water, and K+ in the Kuplu stream water. The concentrations of Na+, K+, Ca2+, Mg2+, SO2,4, HCO,3, Cl,, As, Pb, Ni, Mn, Cr, Zn, Fe and U in the Kuplu and Guz stream waters were much higher than the world average values. The Dilaver, Gubi, Tepekoy, Maden, Celik and Abaza streams interact with sedimentary rocks, and the Kuplu and Guz streams interact with volcanic rocks. The amount of suspended sediment in the River Buyukmelen in December 2002 was 120 mg l,1. The suspended and bed sediments in the muddy stream waters are formed of quartz, calcite, plagioclase, clay (kaolinite, illite and smectite), muscovite and amphibole minerals. As, Co, Cd, Cr, Pb, Ni, Zn and U have all accumulated in the Buyukmelen river-bed sediments. The muddy feature of the waters is related to the petrographic features of the rocks in the basin and their mineralogical compositions, as most of the sandstones and volcanic rocks (basalt, tuffite and agglomerate) are decomposed to a clay-rich composition at the surface. Thus, the suspended sediment in stream waters increases by physical weathering of the rocks and water,rock interaction. Owing to the growing population and industrialization, water demand is increasing. The plan is to bring water from the River Buyukmelen to Istanbul's drinking-water reservoirs. According to the Water Pollution Regulations, the River Buyukmelen belongs to quality class 1 based on Hg, Cd, Pb, As, Cu, Cr, Zn, Mn, Se, Ba, Na+, Cl,, and SO2,4; and to quality class 3 based on Fe concentration. The concentration of Fe in the River Buyukmelen exceeds the limit values permitted by the World Health Organization and the Turkish Standard. Because water from the River Buyukmelen will be used as drinking water, it will have an adverse effect on water quality and humans if not treated in advance. In addition, the inclusion of Mn and Zn in the Elmali drinking-water reservoir of Istanbul and Fe in the River Buyukmelen water indicates natural inorganic contamination. Mn, Zn and Fe contents in the waters are related to geological origin. Moreover, the River Buyukmelen flow is very muddy in the rainy seasons and it is inevitable that this will pose problems during the purification process. Copyright 2005 John Wiley & Sons, Ltd. [source]


Textural and compositional controls on modern beach and dune sands, New Zealand

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 3 2007
J. J. Kasper-Zubillaga
Abstract Textural, compositional, physical and geophysical determinations were carried out on 111 beach and dune sand samples from two areas in New Zealand: the Kapiti,Foxton coast sourced by terranes of andesite and greywackes and the Farewell Spit,Wharariki coast sourced by a wide variety of Paleozoic terranes. Our aim is to understand how long-shore drift, beach width and source rock control the sedimentological and petrographic characteristics of beach and dune sands. Furthermore, this study shows the usefulness of specific minerals (quartz, plagioclase with magnetite inclusions, monomineralic opaque grains) to interpret the physical processes (fluvial discharges, long-shore currents, winds) that distribute beach and dune sands in narrow and wide coastal plains. This was done by means of direct (grain size and modal analyses) and indirect (specific gravity, magnetic/non-magnetic separations M/NM, magnetic susceptibility measurements, hysteresis loops) methods. Results are compared with beach sands from Hawaii, Oregon, the Spanish Mediterranean, Elba Island and Southern California. Compositionally, the Kapiti,Foxton sands are similar to first-order immature sands, which retain their fluvial signature. This results from the high discharge of rivers and the narrow beaches that control the composition of the Kapiti,Foxton sands. The abundance of feldspar with magnetite inclusions controls the specific gravity of the Kapiti,Foxton sands due to their low content of opaque minerals and coarse grain size. Magnetic susceptibility of the sands is related mainly to the abundance of feldspars with Fe oxides, volcanic lithics and free-opaque minerals. The Farewell Spit,Wharariki sands are slightly more mature than the Kapiti,Foxton sands. The composition of the Farewell Spit,Wharariki sands does not reflect accurately their provenance due to the prevalence of long-shore drift, waves, little river input and a wide beach. Low abundance of feldspar with magnetite inclusions and free opaque grains produces poor correlations between specific gravity (Sg) and Fe oxide bearing minerals. The small correlation between opaque grains and M/NM may be related to grain size. The magnetic susceptibility of Farewell Spit,Wharariki sands is low due to the low content of grains with magnetite inclusions. Hysteresis and isothermal remnant magnetization (IRM) agree with the magnetic susceptibility values. Copyright 2006 John Wiley & Sons, Ltd. [source]


Water quality and hydrogeochemical characteristics of the River Buyukmelen, Duzce, Turkey

HYDROLOGICAL PROCESSES, Issue 20 2005
Rustem Pehlivan
Abstract The River Buyukmelen is located in the province of Duzce in northwest Turkey and its water basin is approximately 470 km2. The Aksu, Kucukmelen and Ugursuyu streams flow into the River Buyukmelen. It flows into the Black Sea with an output of 44 m3 s,1. The geological succession in the basin comprises limestone and dolomitic limestone of the Y,lanl, formation, sandstone, clayey limestone and marls of the Akveren formation, clastics and volcano-clastics of the Caycuma formation, and cover units comprised of river alluvium, lacutrine sediments and beach sands. The River Buyukmelen is expected to be a water source that can supply the drinking water needs of Istanbul until 2040; therefore, it is imperative that its water quality be preserved. The samples of rock, soil, stream water, suspended, bed and stream sediments and beach sand were collected from the Buyukmelen river basin. They were examined using mineralogical and geochemical methods. The chemical constituents most commonly found in the stream waters are Na+, Mg2+, SO2,4, Cl, and HCO3, in the Guz stream water, Ca2+ in the Abaza stream water, and K+ in the Kuplu stream water. The concentrations of Na+, K+, Ca2+, Mg2+, SO2,4, HCO,3, Cl,, As, Pb, Ni, Mn, Cr, Zn, Fe and U in the Kuplu and Guz stream waters were much higher than the world average values. The Dilaver, Gubi, Tepekoy, Maden, Celik and Abaza streams interact with sedimentary rocks, and the Kuplu and Guz streams interact with volcanic rocks. The amount of suspended sediment in the River Buyukmelen in December 2002 was 120 mg l,1. The suspended and bed sediments in the muddy stream waters are formed of quartz, calcite, plagioclase, clay (kaolinite, illite and smectite), muscovite and amphibole minerals. As, Co, Cd, Cr, Pb, Ni, Zn and U have all accumulated in the Buyukmelen river-bed sediments. The muddy feature of the waters is related to the petrographic features of the rocks in the basin and their mineralogical compositions, as most of the sandstones and volcanic rocks (basalt, tuffite and agglomerate) are decomposed to a clay-rich composition at the surface. Thus, the suspended sediment in stream waters increases by physical weathering of the rocks and water,rock interaction. Owing to the growing population and industrialization, water demand is increasing. The plan is to bring water from the River Buyukmelen to Istanbul's drinking-water reservoirs. According to the Water Pollution Regulations, the River Buyukmelen belongs to quality class 1 based on Hg, Cd, Pb, As, Cu, Cr, Zn, Mn, Se, Ba, Na+, Cl,, and SO2,4; and to quality class 3 based on Fe concentration. The concentration of Fe in the River Buyukmelen exceeds the limit values permitted by the World Health Organization and the Turkish Standard. Because water from the River Buyukmelen will be used as drinking water, it will have an adverse effect on water quality and humans if not treated in advance. In addition, the inclusion of Mn and Zn in the Elmali drinking-water reservoir of Istanbul and Fe in the River Buyukmelen water indicates natural inorganic contamination. Mn, Zn and Fe contents in the waters are related to geological origin. Moreover, the River Buyukmelen flow is very muddy in the rainy seasons and it is inevitable that this will pose problems during the purification process. Copyright 2005 John Wiley & Sons, Ltd. [source]