Two-year Field Study (two-year + field_study)

Distribution by Scientific Domains


Selected Abstracts


In situ reproduction, abundance, and growth of young-of-year and adult largemouth bass in a population exposed to polychlorinated biphenyls

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2004
Dudley W. Reiser
Abstract We conducted a two-year field study (2000,2001) in the Housatonic River, Massachusetts (USA) to determine if we could detect in situ population-level effects on largemouth bass (Micropterus salmoides) exposed to elevated levels of polychlorinated biphenyls (PCBs). Calculated whole-body PCB concentrations in adult bass in 2002 averaged 121 mg/kg (range = 34,556 mg/kg). Polychlorinated biphenyl concentrations in young-of-year (YOY) composites in 2000 and 2002 averaged 28 mg/kg (range = 21,41 mg/kg) and 19 mg/kg (range = 16,24 mg/kg), respectively. Laboratory studies of fish have reported PCB toxicity at exposure levels below and within the range of those found in the Housatonic River. We evaluated five field-derived metrics: reproductive activity, relative abundance of YOY, YOY growth rates, adult growth, and adult condition to determine whether we could detect effects of PCBs in the largemouth bass population. These computed metrics, when compared with data sets assembled for numerous largemouth bass populations in North America, provided no evidence of population-level impairment. Results of this study suggest that PCB tissue concentrations associated with effects in laboratory studies do not necessarily translate to detectable effects on largemouth bass populations in their natural environment. [source]


Evaluating Tripsacum -introgressed maize germplasm after infestation with western corn rootworms (Coleoptera: Chrysomelidae)

JOURNAL OF APPLIED ENTOMOLOGY, Issue 1 2009
D. A. Prischmann
Abstract Maize (Zea mays L.) is a valuable commodity throughout the world, but corn rootworms (Chrysomelidae: Diabrotica spp.) often cause economic damage and increase production costs. Current rootworm management strategies have limitations, and in order to create viable management alternatives, researchers have been developing novel maize lines using Eastern gamagrass (Tripsacum dactyloides L.) germplasm, a wild relative of maize that is resistant to rootworms. Ten maize Tripsacum -introgressed inbred lines derived from recurrent selection of crosses with gamagrass and teosinte (Zea diploperennis Iltis) recombinants and two public inbred lines were assessed for susceptibility to western corn rootworm (Diabrotica virgifera virgifera LeConte) and yield in a two-year field study. Two experimental maize inbred lines, SDG11 and SDG20, had mean root damage ratings that were significantly lower than the susceptible public line B73. Two other experimental maize inbred lines, SDG12 and SDG6, appeared tolerant to rootworm damage because they exhibited yield increases after rootworm infestation in both years. In the majority of cases, mean yield per plant of experimental maize lines used in yield analyses was equal to or exceeded that of the public inbred lines B73 and W64A. Our study indicates that there is potential to use Tripsacum -introgressed maize germplasm in breeding programs to enhance plant resistance and/or tolerance to corn rootworms, although further research on insect resistance and agronomic potential of this germplasm needs to be conducted in F1 hybrids. [source]


GIS-Based Predictive Models of Hillslope Runoff Generation Processes,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2009
Mansour D. Leh
Abstract:, Successful nonpoint source pollution control using best management practice placement is a complex process that requires in-depth knowledge of the locations of runoff source areas in a watershed. Currently, very few simulation tools are capable of identifying critical runoff source areas on hillslopes and those available are not directly applicable under all runoff conditions. In this paper, a comparison of two geographic information system (GIS)-based approaches: a topographic index model and a likelihood indicator model is presented, in predicting likely locations of saturation excess and infiltration excess runoff source areas in a hillslope of the Savoy Experimental Watershed located in northwest Arkansas. Based on intensive data collected from a two-year field study, the spatial distributions of hydrologic variables were processed using GIS software to develop the models. The likelihood indicator model was used to produce probability surfaces that indicated the likelihood of location of both saturation and infiltration excess runoff mechanisms on the hillslope. Overall accuracies of the likelihood indicator model predictions varied between 81 and 87% for the infiltration excess and saturation excess runoff locations respectively. On the basis of accuracy of prediction, the likelihood indicator models were found to be superior (accuracy 81-87%) to the predications made by the topographic index model (accuracy 69.5%). By combining statistics with GIS, runoff source areas on a hillslope can be identified by incorporating easily determined hydrologic measurements (such as bulk density, porosity, slope, depth to bed rock, depth to water table) and could serve as a watershed management tool for identifying critical runoff source areas in locations where the topographic index or other similar methods do not provide reliable results. [source]


Does the mode of transmission between hosts affect the host choice strategies of parasites?

OIKOS, Issue 2 2009
Implications from a field study on bat fly, wing mite infestation of Bechstein's bats
In a two-year field study, we analyzed the distribution of two hematophagous ectoparasites, the bat fly Basilia nana and the wing mite Spinturnix bechsteini, within and among 14 female colonies and among 26 solitary male Bechstein's bats Myotis bechsteinii. Our goal was to investigate whether differences in the transmission mode of the parasites, which result from differences in their life cycle, affect their distribution between host colonies and among host individuals within colonies. Bat flies deposit puparia in bat roosts, allowing for the transmission of hatched flies via successively shared roosts, independent of body contact between hosts or of hosts occupying a roost at the same time. In contrast, wing mites stay on the bat's body and are transmitted exclusively by contact of bats that roost together. As expected in cases of higher inter-colony transmissibility, bat flies were more prevalent among the demographically isolated Bechstein's bat colonies and among solitary male bats, as compared to wing mites. Moreover, the prevalence and density of wing mites, but not of bat flies, was positively correlated with colony size, as expected in cases of low inter-colony transmissibility. Within colonies, bat flies showed higher abundance on host individuals in good body condition, which are likely to have high nutritional status and strong immunity. Wing mites showed higher abundance on hosts in medium body condition and on reproductive females and juveniles, which are likely to have relatively weak immunity. We suggest that the observed infestation patterns within host colonies reflect different host choice strategies of bat flies and wing mites, which may result from differences in their inter-colony transmissibility. Our data also indicate that infestation with wing mites, but not with bat flies, might be a cost of sociality in Bechstein's bats. [source]