Two-dimensional Shallow Water Equations (two-dimensional + shallow_water_equation)

Distribution by Scientific Domains


Selected Abstracts


Solution of non-linear dispersive wave problems using a moving finite element method

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 4 2007
Abigail Wacher
Abstract The solution of the fully non-linear time-dependent two-dimensional shallow water equations is considered. Dispersive effects due to the Coriolis forces are taken into account. Such effects are of major importance in geophysical fluid dynamics applications. The recently proposed string gradient weighted moving finite element method is extended for this class of problems. This method simultaneously determines, at each time step, the solution of the governing partial differential equations and an optimal location of the finite element nodes. It has previously been applied to non-dispersive wave problems; here its performance under the demanding conditions of large Coriolis forces, inducing large mesh and field rotation, is studied. Optimal rates of convergence are obtained. Results for some example problems of water hump release are presented. Non-linear and linearized solutions are compared. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Shoreline tracking and implicit source terms for a well balanced inundation model

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 10 2010
Giovanni FranchelloArticle first published online: 31 JUL 200
Abstract The HyFlux2 model has been developed to simulate severe inundation scenario due to dam break, flash flood and tsunami-wave run-up. The model solves the conservative form of the two-dimensional shallow water equations using the finite volume method. The interface flux is computed by a Flux Vector Splitting method for shallow water equations based on a Godunov-type approach. A second-order scheme is applied to the water surface level and velocity, providing results with high accuracy and assuring the balance between fluxes and sources also for complex bathymetry and topography. Physical models are included to deal with bottom steps and shorelines. The second-order scheme together with the shoreline-tracking method and the implicit source term treatment makes the model well balanced in respect to mass and momentum conservation laws, providing reliable and robust results. The developed model is validated in this paper with a 2D numerical test case and with the Okushiri tsunami run up problem. It is shown that the HyFlux2 model is able to model inundation problems, with a satisfactory prediction of the major flow characteristics such as water depth, water velocity, flood extent, and flood-wave arrival time. The results provided by the model are of great importance for the risk assessment and management. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Unstructured finite volume discretization of two-dimensional depth-averaged shallow water equations with porosity

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 8 2010
L. Cea
Abstract This paper deals with the numerical discretization of two-dimensional depth-averaged models with porosity. The equations solved by these models are similar to the classic shallow water equations, but include additional terms to account for the effect of small-scale impervious obstructions which are not resolved by the numerical mesh because their size is smaller or similar to the average mesh size. These small-scale obstructions diminish the available storage volume on a given region, reduce the effective cross section for the water to flow, and increase the head losses due to additional drag forces and turbulence. In shallow water models with porosity these effects are modelled introducing an effective porosity parameter in the mass and momentum conservation equations, and including an additional drag source term in the momentum equations. This paper presents and compares two different numerical discretizations for the two-dimensional shallow water equations with porosity, both of them are high-order schemes. The numerical schemes proposed are well-balanced, in the sense that they preserve naturally the exact hydrostatic solution without the need of high-order corrections in the source terms. At the same time they are able to deal accurately with regions of zero porosity, where the water cannot flow. Several numerical test cases are used in order to verify the properties of the discretization schemes proposed. Copyright © 2009 John Wiley & Sons, Ltd. [source]


An approximate-state Riemann solver for the two-dimensional shallow water equations with porosity

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 12 2010
P. Finaud-Guyot
Abstract PorAS, a new approximate-state Riemann solver, is proposed for hyperbolic systems of conservation laws with source terms and porosity. The use of porosity enables a simple representation of urban floodplains by taking into account the global reduction in the exchange sections and storage. The introduction of the porosity coefficient induces modified expressions for the fluxes and source terms in the continuity and momentum equations. The solution is considered to be made of rarefaction waves and is determined using the Riemann invariants. To allow a direct computation of the flux through the computational cells interfaces, the Riemann invariants are expressed as functions of the flux vector. The application of the PorAS solver to the shallow water equations is presented and several computational examples are given for a comparison with the HLLC solver. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Dispersion and stability analyses of the linearized two-dimensional shallow water equations in boundary-fitted co-ordinates

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 7 2003
S. Sankaranarayanan
Abstract In the present investigation, a Fourier analysis is used to study the phase and group speeds of a linearized, two-dimensional shallow water equations, in a non-orthogonal boundary-fitted co-ordinate system. The phase and group speeds for the spatially discretized equations, using the second-order scheme in an Arakawa C grid, are calculated for grids with varying degrees of non-orthogonality and compared with those obtained from the continuous case. The spatially discrete system is seen to be slightly dispersive, with the degree of dispersivity increasing with an decrease in the grid non-orthogonality angle or decrease in grid resolution and this is in agreement with the conclusions reached by Sankaranarayanan and Spaulding (J. Comput. Phys., 2003; 184: 299,320). The stability condition for the non-orthogonal case is satisfied even when the grid non-orthogonality angle, is as low as 30° for the Crank Nicolson and three-time level schemes. A two-dimensional wave deformation analysis, based on complex propagation factor developed by Leendertse (Report RM-5294-PR, The Rand Corp., Santa Monica, CA, 1967), is used to estimate the amplitude and phase errors of the two-time level Crank,Nicolson scheme. There is no dissipation in the amplitude of the solution. However, the phase error is found to increase, as the grid angle decreases for a constant Courant number, and increases as Courant number increases. Copyright © 2003 John Wiley & Sons, Ltd. [source]


A cascadic conjugate gradient algorithm for mass conservative, semi-implicit discretization of the shallow water equations on locally refined structured grids

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 1-2 2002
Luca Bonaventura
Abstract A semi-implicit, mass conservative discretization scheme is applied to the two-dimensional shallow water equations on a hierarchy of structured, locally refined Cartesian grids. Different resolution grids are fully interacting and the discrete Helmholtz equation obtained from the semi-implicit discretization is solved by the cascadic conjugate gradient method. A flux correction is applied at the interface between the coarser and finer discretization grids, so as to ensure discrete mass conservation, along with symmetry and diagonal dominance of the resulting matrix. Two-dimensional idealized simulations are presented, showing the accuracy and the efficiency of the resulting method. Copyright © 2002 John Wiley & Sons, Ltd. [source]