Turbulent Regimes (turbulent + regime)

Distribution by Scientific Domains


Selected Abstracts


The distribution and prevalence of sponges in relation to environmental gradients within a temperate sea lough: vertical cliff surfaces

DIVERSITY AND DISTRIBUTIONS, Issue 6 2000
James J. Bell
Abstract. The prevalence and distribution of sponges was surveyed on vertical cliff surfaces at Lough Hyne Marine Nature Reserve, Co. Cork, Ireland. The number of sponge species was recorded at 6-metre depth intervals at four sites within Lough Hyne, and at one site on the adjacent Atlantic coastline to examine differences in abundance and zonation patterns. Sites ranged from an exposed turbulent regime to sheltered, sedimented environments. Individual species showed different distributions and prevalence between sites and with increasing depth. Greatest differences were observed between the most- and least-disturbed sites. Distinct sponge zonation patterns were evident at all sites sampled. Twenty-five species were considered dominant at all five sites with the remaining 48 species considered rare. Only four of the 25 most-dominant species occurred at the site experiencing the most turbulent flow conditions, whereas 12 species were found at the site of unidirectional fast flow. At sites of moderate to slight water movement and high sedimentation, between 18 and 24 of the most dominant species were present. Encrusting forms constituted high proportions of sponge communities at all five sites sampled (although consisting of different species). At sites of turbulent and unidirectional fast flow massive forms also dominated whereas at the least turbulent sites, where sedimentation was high, arborescent sponges were abundant. Few species showed exclusive distribution to a single depth and site, but there was some degree of correlation between species distributions and abiotic factors such as sedimentation rate and flow regimes. Sponge distributions and densities are discussed with respect to the suitability of species' morphologies to particular environments, intra-specific and inter-specific competition and physiological adaptations that enable them to survive in different habitats. [source]


Experimental and CFD studies of fluid dynamic gauging in annular flows

AICHE JOURNAL, Issue 8 2009
T. Gu
Abstract Fluid dynamic gauging has been applied for the first time to measurements on a curved surface, specifically the inner convex surface of an annulus. Two hydraulic cases were examined: (i) the quasi-static case, where there is no flow in the annulus, other than the flow imposed by the working action of the gauge and (ii) the turbulent case, where there is additionally a forced advective flow in the turbulent regime (14,000 < Reannulus < 32,000). The nozzle clearance,flow rate characteristics resembled those reported previously for flat geometries, with one exception; at small clearance values (0 < h/dt < 0.1), flow rate was found to be independent of clearance because of a leakage flow arising from the curvature of the surface. The experimental results for the quasi-static case showed very good agreement with simulations of the configuration using computational fluid dynamics (CFD). The agreement indicates that the technique may be used not only for measuring the thickness of deposits on curved surfaces, but also for measuring their strength. CFD simulation of the turbulent case was not attempted, but the experimental results imply that the technique could be used reliably as a real-time in situ thickness sensor for this scenario, which is often employed in laboratory fouling studies. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Drag enhancement of aqueous electrolyte solutions in turbulent pipe flow

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 3 2007
E. Benard
Abstract Experimental measurements have indicated that drag enhancement occurs when aqueous electrolyte solutions are flowing in the turbulent regime. The primary electroviscous effect due to the distortion by the shear field of the electrical double layer surrounding the ions in solution is invoked to explain the drag enhancement. Calculations using the Booth model for symmetrical one-to-one electrolytes enabled the increased viscosity in the turbulent regime to be calculated. Copyright © 2007 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


The influence of surface roughness on fluid flow through cracks

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 11 2002
T. C. CHIVERS
ABSTRACT Leak-before-break (l-b-b) safety cases depend on predictions of flow rate through postulated cracks. The calculated flow rates are dependent upon assumptions made about a number of features including fluid friction, and this in turn is influenced by surface roughness and flow regime. This paper considers the uncertainties associated with flow rate prediction in both the laminar and fully rough turbulent regimes as influenced by fluid friction. It shows how uncertainties can be bounded. In particular it discusses the maximum values for fluid friction that might arise in practice. The use of computational fluid dynamics in future analyses could significantly reduce the uncertainties associated with fluid friction in cracks. [source]


Improvement of the basic correlating equations and transition criteria of natural convection heat transfer

HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 4 2001
Shi-Ming Yang
Abstract In this paper, improvements in the basic physical laws of natural convection heat transfer were implemented in two major respects by incorporating recent research findings in this field. A preferred transition criterion was adopted in this paper to correlate all of the experimental data. Since transition correlations are primarily flow stability problems, the Grashof number, instead of the Rayleigh number, was found to be the preferred criterion. Furthermore, in the case of natural convection heat transfer from a horizontal cylinder, a series of experimental data in the high-Rayleigh-number regions recently became available. These data made it possible to establish new reliable correlations and also to test the validity of previous correlations. It is concluded that the previous correlation for a horizontal cylinder in high-Rayleigh-number regions was based on unreliable experimental results. The transition correlation for a horizontal cylinder occurred at much higher values of Rayleigh number than the previous recommendation. In the case of natural convection heat transfer from a vertical plate, more accurate property values for air under pressurized conditions are now available. This made it possible to replot the reliable data of Saunders. From this result and the experimental result of Warner and Arpaci, a new set of basic correlations in natural convection heat transfer for laminar, transitional, and turbulent regimes are recommended. These recommendations reflect a better understanding of the basic physical laws in the field of heat convection. © 2001 Scripta Technica, Heat Trans Asian Res, 30(4): 293,300, 2001 [source]


Spanning the flow regimes: Generic fluidized-bed reactor model

AICHE JOURNAL, Issue 7 2003
I. A. Abba
Probabilistic averaging is used to model fluidized-bed reactors across the three fluidlization flow regimes most commonly encountered in industry (bubbling, turbulent, and fast fluidization), extending earlier work, which introduced this approach to bridge the bubbling and turbulent regimes of fluidization. In extending this concept to the fast fluidization regime, the probabilities of being in each of the three regimes are represented as probability density functions derived from regime boundary transition data. The three regime-specific models,a generalized version of a two-phase bubbling bed model at low gas velocities, a dispersed flow model for turbulent beds at intermediate velocities, and a generalized version of a core-annulus model at higher velocities,are employed, leading to improved predictions compared with any of the individual models, while avoiding discontinuities at the regime boundaries. Predictions from the new integrated model are in good agreement with available ozone decomposition data over the full range of applicability covered elsewhere. [source]


Turbulence energetics in stably stratified geophysical flows: Strong and weak mixing regimes

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 633 2008
S. S. Zilitinkevich
Abstract Traditionally, turbulence energetics is characterised by turbulent kinetic energy (TKE) and modelled using solely the TKE budget equation. In stable stratification, TKE is generated by the velocity shear and expended through viscous dissipation and work against buoyancy forces. The effect of stratification is characterised by the ratio of the buoyancy gradient to squared shear, called the Richardson number, Ri. It is widely believed that at Ri exceeding a critical value, Ric, local shear cannot maintain turbulence, and the flow becomes laminar. We revise this concept by extending the energy analysis to turbulent potential and total energies (TPE, and TTE = TKE + TPE), consider their budget equations, and conclude that TTE is a conservative parameter maintained by shear in any stratification. Hence there is no ,energetics Ric', in contrast to the hydrodynamic-instability threshold, Ric,instability, whose typical values vary from 0.25 to 1. We demonstrate that this interval, 0.25 < Ri < 1, separates two different turbulent regimes: strong mixing and weak mixing rather than the turbulent and the laminar regimes, as the classical concept states. This explains persistent occurrence of turbulence in the free atmosphere and deep ocean at Ri , 1, clarifies the principal difference between turbulent boundary layers and free flows, and provides the basis for improving operational turbulence closure models. Copyright © 2008 Royal Meteorological Society [source]