Home About us Contact | |||
Turbulent Mixing (turbulent + mixing)
Selected AbstractsMid-latitude wind stress: the energy source for climatic shifts in the North Pacific OceanFISHERIES OCEANOGRAPHY, Issue 3 2000Parrish Analyses of atmospheric observations in the North Pacific demonstrate extensive decadal-scale variations in the mid-latitude winter surface wind stress. In the decade after 1976 winter, eastward wind stress doubled over a broad area in the central North Pacific and the winter zero wind stress curl line was displaced about 6° southward. This resulted in increased southward Ekman transport, increased oceanic upwelling, and increased turbulent mixing as well as a southward expansion of the area of surface divergence. All these factors contributed to a decadal winter cold anomaly along the subtropical side of the North Pacific Current. In summer the cold anomaly extended eastward, almost reaching the coast of Oregon. The increased gradient in wind stress curl and southward displacement of the zero curl line also resulted in an increase in total North Pacific Current transport, primarily on the Equator side of this Current. Thus, surface water entering the California Current was of more subtropical origin in the post-1976 decade. Southward (upwelling favourable) wind stress and sea surface temperature (SST) in the area off San Francisco exhibit at least three different types of decadal departures from mean conditions. In association with the 1976 climatic shift, marine fishery production in the Oyashio, California and Alaska Currents altered dramatically, suggesting that these natural environmental variations significantly alter the long-term yields of major North Pacific fisheries. [source] Design and scale-up of chemical reactors for nanoparticle precipitationAICHE JOURNAL, Issue 5 2006Daniele L. Marchisio Abstract In recent years there has been a growing interest in production on an industrial scale of particles with size in the sub-micron range (40-200 nm). This can be done by controlling particle formation in order to nucleate very small particles and by tailoring the particle surface in order to avoid particle aggregation and produce stable suspensions. In this work we focus on the role of turbulent mixing on particle formation in confined impinging jet reactors. In particular, we show how computational fluid dynamics and simple precipitation models could be used to derive scale-up criteria for the production of nanoparticles. © 2006 American Institute of Chemical Engineers AIChE J, 2006 [source] Simulation of fine particle formation by precipitation using computational fluid dynamicsTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2000Damien Piton Abstract The 4-environment generalized micromixing (4-EGM) model is applied to describe turbulent mixing and precipitation of barium sulfate in a tubular reactor. The model is implemented in the commercial computational fluid dynamics (CFD) software Fluent. The CFD code is first used to solve for the hydrodynamic fields (velocity, turbulence kinetic energy, turbulent energy dissipation). The species concentrations and moments of the crystal size distribution (CSD) are then computed using user-defined transport equations. CFD simulations are performed for the tubular reactor used in an earlier experimental study of barium sulfate precipitation. The 4-EGM CFD results are shown to compare favourably to CFD results found using the presumed beta PDF model. The latter has previously been shown to yield good agreement with experimental data for the mean crystal size at the outlet of the tubular reactor. On a appliqué un modéle de micromélange généralisé à 4 environnements (4-EGM) afin de décrire le mélange turbulent et la précipitation du sulfate de baryum dans un réacteur tubulaire. Ce modéle a été implanté dans le logiciel de CFD commercial Fluent. Le programme de CFD est d'abord utilisé pour calculer les champs hydrodynamiques (vitesse, énergie cinétique de turbulence, dissipation d'énergie turbulente). Les concentrations d'espéces et les moments de la distribution de taille des cristaux (CSD) sont ensuite calculés par ordinateur à l'aide des équations de transport définies par l'usager. Des simulations de CFD sont réalisées pour le réacteur tubulaire utilisé dans une étude expérimentale antérieure de la précipitation du sulfate de baryum. On montre que les prédictions du 4-EGM se comparent favorablement à celles du modéle béta PDF. II a été montré antérieurement que ce dernier présentait un bon accord avec les donnés expérimentales pour la taille moyenne des cristaux à la sortie du récteur tubulaire. [source] On the onset of bora and the formation of rotors and jumps near a mountain gapTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 630 2008Alexander Gohm Abstract This study investigates the onset phase of a strong Adriatic bora windstorm that occurred on 4 April 2002. The target area is a gap about 20 km wide embedded in the coastal mountain barrier of the Dinaric Alps that favours strong jet-like winds. Airborne-aerosol back-scatter lidar measurements on board the DLR Falcon research aircraft, together with surface and upper-air observations, are used to verify high-resolution numerical experiments conducted with the mesoscale atmospheric model RAMS and a single-layer shallow-water model (SWM). Especially during the breakthrough phase of the bora, the flow at the gap exit exhibits a complex spatial structure and temporal evolution. On a transect through the centre of the gap, a hydraulic jump forms; this is located close to the coast throughout the night, and starts to propagate downstream in the early morning. On a transect through the edge of the gap, a lee-wave-induced rotor becomes established, due to boundary-layer separation. It starts to propagate downstream about two hours after the jump. This flow evolution implies that the onset of strong winds at the coast occurs several hours earlier downstream of the centre of the gap than downwind of the edge of the gap. Consequently, the wind field in the vicinity of Rijeka airport, located downwind of the gap, is strongly inhomogeneous and transient, and represents a potential hazard to aviation. Measured bora winds at the surface exceed 20 ms,1, and the simulated wind speed in the gap wind layer exceeds 30 ms,1. The simulated turbulent kinetic energy exceeds 10 m2 s,2. RAMS indicates that wave-breaking near a critical level is the dominant mechanism for the generation of the windstorm. Gap jets can be identified downstream of several mountain passes. The simulated wave pattern above the Dinaric Alps, the wave decay with height due to directional wind shear and the strong flow descent on the leeward side of the barrier are supported by measured back-scatter intensities. Basic bora flow features, including gap jets and jumps, are remarkably well reproduced by SWM simulations. The RAMS reference run captures observed flow phenomena and the temporal flow evolution qualitatively well. A cold low-level bias, an overestimated bora inversion strength, and a slightly too-early bora onset are probably related to insufficient turbulent mixing in the boundary layer. The amplitude of trapped gravity waves, the time of the bora breakthrough and the inversion strength are found to be quite sensitive to the turbulence parametrization. Copyright © 2008 Royal Meteorological Society [source] Role of nocturnal turbulence and advection in the formation of shallow cumulus over landTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 628 2007Jordi Vilà-Guerau de Arellano Abstract Shallow cumuli over land are normally studied from a diurnal perspective. However, the thermodynamic vertical profiles of the morning transition may play an important role in setting up favourable conditions for the formation of shallow cumuli. In turn, these profiles are highly dependent on the evolution of the nocturnal boundary characteristics and of their layer aloft. By analysing thermodynamic profiles measured by radiosondes launched every three hours at four different stations, we are able to determine how horizontal advection and turbulent mixing modify the atmospheric stability and the differences in potential temperature and specific humidity at the interface between the atmospheric boundary layer and the layer above it. Two consecutive nights are studied. They show very similar boundary-layer development; but variations in the layer aloft by a low-level-jet advection event during the second night, and intense turbulent mechanical mixing, lead to the development of two diurnal boundary layers with very different characteristics: the first one clear, the second cloudy. To complete the observational study, we perform a sensitivity analysis using a mixed-layer model to examine the role of the morning initial conditions in the formation of shallow cumuli over land. The complexity and subtlety of the observed situation,namely, the interaction of a strongly-mixed nocturnal boundary layer and horizontal advection,make this case suitable for testing the capacity of mesoscale models to reproduce cloudy boundary layers that are largely dependent on conditions during the previous night. Copyright © 2007 Royal Meteorological Society [source] A coupled dispersion and exchange model for short-range dry deposition of atmospheric ammoniaTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 618 2006Benjamin Loubet Abstract The MODDAS-2D model (MOdel of Dispersion and Deposition of Ammonia over the Short-range in two dimensions) is presented. This stationary model couples a two-dimensional Lagrangian stochastic model for short-range dispersion, with a leaf-scale bi-directional exchange model for ammonia (NH3), which includes cuticular uptake and a stomatal compensation point. The coupling is obtained by splitting the upward and downward components of the flux, which can be generalized for any trace gas, and hence provides a way of simply incorporating bi-directional exchanges in existing deposition velocity models. The leaf boundary-layer resistance is parametrized to account for mixed convection in the canopy, and the model incorporates a stability correction for the Lagrangian time-scale for vertical velocity, which tends to increase the Lagrangian time-scale in very stable conditions compared with usual parametrizations. The model is validated against three datasets, where concentrations of atmospheric NH3 were measured at several distances from a line source. Two datasets are over grassland and one is over maize, giving a range of canopy structure. The model correctly simulates the concentration in one situation, but consistently overestimates it at further distances or underestimates it at small distances in the two other situations. It is argued that these discrepancies are mainly due to the lack of length of one of the line sources and non-aligned winds. Analysis shows that the surface exchange parameters and the turbulent mixing at the source level are the predominant factors controlling short-range deposition of NH3. Copyright © 2006 Royal Meteorological Society [source] Flow over a hill covered with a plant canopyTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 596 2004J. J. Finnigan Abstract We develop an analytical model for atmospheric boundary-layer flow over a hill that is covered with a vegetation canopy. The slope of the hill is assumed to be small enough that the flow above the canopy can be treated within the linear framework of Hunt. Perturbations to the flow within the canopy are driven by the pressure gradient associated with the flow over the hill. In the upper canopy this pressure gradient is balanced by downwards turbulent transport of momentum and the canopy drag. The flow there can be calculated from linearized dynamics, which show that the maximum streamwise winds are where the perturbation pressure is at a minimum, i.e. near the crest of the hill. Deep within the canopy the pressure gradient associated with the flow over the hill is balanced by the canopy drag, here the nonlinear canopy drag. This nonlinear balance shows how the streamwise winds are largest where the perturbation pressure gradient is largest, i.e. on the upwind slope of the hill. In the lee of the hill this nonlinear solution shows how the pressure gradient decelerates the wind deep within the canopy, leading to separation with a region of reversed flow when the canopy is sufficiently deep. Coupling between the out-of-phase flows within and above the canopy means that the maximum velocity is further upwind of the hill crest than in flow over a rough hill, while the extra turbulent mixing caused by the canopy significantly reduces the magnitude of the velocity speed-up over the hill. Finally, we find that there is no formal limit process where the solutions with a canopy yield the well-known solutions for flow over a rough hill. This finding calls into question the very use of a roughness length in accelerating or decelerating turbulent boundary layers. Copyright © 2004 Royal Meteorological Society [source] Hydrogen Production from a Fluidized-bed Coal Gasifier with In Situ Fixation of CO2,Part I: Numerical ModelCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 2 2008J. Lu Abstract In order to attempt to eliminate global warming effects, it is highly desirable that new technologies with lower or zero emission of CO2 to the environment are developed. In this work, a high-pressure fluidized-bed coal gasifier for H2 production with in situ fixation of CO2 is simulated by a comprehensive two-dimensional model. The Eddy Dissipation Concept (EDC) model is first adopted in the pulverized coal gasification model to simultaneously describe the turbulent mixing and detailed chemical kinetics. The developed model is verified with experimental results. The simulated concentrations for the gas product agree well with the experimental data. The simulated distributions for gas temperature and velocity correlate well with the reaction mechanism and experimental phenomena. [source] |