Home About us Contact | |||
Tubular Membrane (tubular + membrane)
Selected AbstractsRapid Ca2+ flux through the transverse tubular membrane, activated by individual action potentials in mammalian skeletal muscleTHE JOURNAL OF PHYSIOLOGY, Issue 10 2009Bradley S. Launikonis Periods of low frequency stimulation are known to increase the net Ca2+ uptake in skeletal muscle but the mechanism responsible for this Ca2+ entry is not known. In this study a novel high-resolution fluorescence microscopy approach allowed the detection of an action potential-induced Ca2+ flux across the tubular (t-) system of rat extensor digitorum longus muscle fibres that appears to be responsible for the net uptake of Ca2+ in working muscle. Action potentials were triggered in the t-system of mechanically skinned fibres from rat by brief field stimulation and t-system [Ca2+] ([Ca2+]t-sys) and cytoplasmic [Ca2+] ([Ca2+]cyto) were simultaneously resolved on a confocal microscope. When initial [Ca2+]t-sys was , 0.2 mm a Ca2+ flux from t-system to the cytoplasm was observed following a single action potential. The action potential-induced Ca2+ flux and associated t-system Ca2+ permeability decayed exponentially and displayed inactivation characteristics such that further Ca2+ entry across the t-system could not be observed after 2,3 action potentials at 10 Hz stimulation rate. When [Ca2+]t-sys was closer to 0.1 mm, a transient rise in [Ca2+]t-sys was observed almost concurrently with the increase in [Ca2+]cyto following the action potential. The change in direction of Ca2+ flux was consistent with changes in the direction of the driving force for Ca2+. This is the first demonstration of a rapid t-system Ca2+ flux associated with a single action potential in mammalian skeletal muscle. The properties of this channel are inconsistent with a flux through the L-type Ca2+ channel suggesting that an as yet unidentified t-system protein is conducting this current. This action potential-activated Ca2+ flux provides an explanation for the previously described Ca2+ entry and accumulation observed with prolonged, intermittent muscle activity. [source] Treatment of Skim Latex Serum Using Gas Sparged UltrafiltrationASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 5-6 2005Harunsyah Abstract The major pollutants from a natural rubber processing factory have high organic content and emit an offensive smell due to the biodegradation of the organic matter. In latex concentrate factories, the main sources of effluent are the skim latex serum and washings from all process equipment. This paper presents an application of membrane technology that involves gas sparging for the treatment of skim latex serum. A semi-pilot-scale system using a PVDF vertical tubular membrane (MWCO 100,000) was installed as the experimental setup. Nitrogen gas was bubbled vertically upwards at flowrates ranging from 300 to 500 ml/min. Results obtained thus far show that gas sparging has increased the permeate flux between 1.37% and 146.34% compared to non-gas sparged conditions. In terms of permeate quality, the reductions achieved for suspended solids, total solids, COD, BOD, total nitrogen and ammoniacal nitrogen were 83%, 95%, 67%, 77%, 51%, 74%, respectively, for the gas-sparged condition. Under non gas-sparging conditions, reductions achieved for suspended solids, total solids, COD, BOD, total nitrogen and ammoniacal nitrogen were 92%, 96%, 67%, 72%, 60%, 75%, respectively. [source] Enzyme recovery during gas/liquid two-phase flow microfiltration of enzyme/yeast mixturesBIOTECHNOLOGY & BIOENGINEERING, Issue 6 2002Muriel Mercier-Bonin Abstract The effect of a gas/liquid two-phase flow on the recovery of an enzyme was evaluated and compared with standard crossflow operation when confronted with the microfiltration of a high-fouling yeast suspension. Ceramic tubular and flat sheet membranes were used. At constant feed concentration (permeate recycling) and transmembrane pressure, the results obtained with the tubular membrane were dependent on the two-phase flow pattern. In comparison with single-phase flow performances at the same liquid velocity, the enzyme transmission was maintained at a high level with a bubble flow pattern but it decreased by 70% with a slug flow, whatever the flow rate ratio. Identical results were obtained with flat sheet membranes: for the highest flow rate ratio, the enzyme transmission was reduced by 70% even though the permeate flux was improved by 240%. During diafiltration experiments with the tubular membrane, it was found that a bubble flow pattern led to a 13% higher enzyme recovery compared to single-phase flow conditions, whereas with a slug flow the enzyme recovery was strongly reduced. With bubble flow conditions, energy consumption was minimal, confirming that this flow pattern was the most suitable for enzyme recovery. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 80: 610,621, 2002. [source] Synthesis of mesoporous alumina,titania membranes by the sol-gel methodASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2010A. Bottino Abstract Ceramic tubular membranes with alumina,titania top layers were prepared using the dipping procedure and a mixed sol composed of both boehmite and titania. The influence of the Ti/Al ratio, the amount of an organic additive (namely hydroxypropylcellulose), the dip-time, the number of depositions and drying,calcination conditions on the membrane morphology and transport properties were investigated. The conditions for the formation of a defect-free and homogeneous top layer were individuated. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source] |