Tube Formation (tube + formation)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Tube Formation

  • capillary tube formation
  • endothelial tube formation


  • Selected Abstracts


    Development of the endoderm and gut in medaka, Oryzias latipes

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 5 2006
    Daisuke Kobayashi
    We performed an extensive analysis of endodermal development and gut tube morphogenesis in the medaka embryo by histology and in situ hybridization. The markers used in these analyses included sox17, sox32, foxA2, gata-4, -5, -6 and shh. sox17, sox32, foxA2, and gata-5 and -6 are expressed in the early endoderm to the onset of gut tube formation. Sections of medaka embryos hybridized with foxA2, a pan-endodermal marker during gut morphogenesis, demonstrated that gut tube formation is initiated in the anterior portion and that the anterior and mid/posterior gut undergo distinct morphogenetic processes. Tube formation in the anterior endoderm that is fated to the pharynx and esophagus is much delayed and appears to be independent of gut morphogenesis. The overall aspects of medaka gut development are similar to those of zebrafish, except that zebrafish tube formation initiates at both the anterior and posterior portions. Our results therefore describe both molecular and morphological aspects of medaka digestive system development that will be necessary for the characterization of medaka mutants. [source]


    Fundus rotation gastroplasty: rationale, technique and results,

    DISEASES OF THE ESOPHAGUS, Issue 2 2002
    W. Uhl
    SUMMARY. Anastomotic leakage is the main factor (up to 30%) for postoperative morbidity and mortality after esophageal resection. Compromised anastomotic perfusion after dissection of supplying vessels for gastric tube formation and tension on the suture line are the two main reasons for anastomotic insufficiency. To prevent anastomotic leakage, a new technique for gastric tube formation after esophageal resection has been developed and introduced into surgical practice: the fundus rotation gastroplasty (FRG). The following paper summarizes rationale, technique and early results of this new technique. It is shown that the FRG is a safe and effective technique for esophageal reconstruction and offers important advantages over conventional gastroplasties: (i) the improved perfusion of the oral part of the tube; (ii) the gain of tube length allowing for a safer performance of even pharyngeal anastomosis as shown by the low insufficiency rate of 9%; and (iii) the increase of remaining gastric reservoir supporting physiologic stomach and gut function. Therefore, the FRG seems to be an alternative and safe method for esophageal reconstruction, especially for high anastomotic locations. [source]


    Nonlysine-analog plasminogen modulators promote autoproteolytic generation of plasmin(ogen) fragments with angiostatin-like activity

    FEBS JOURNAL, Issue 4 2004
    Shigeki Ohyama
    We recently discovered several nonlysine-analog conformational modulators for plasminogen. These include SMTP-6, thioplabin B and complestatin that are low molecular mass compounds of microbial origin. Unlike lysine-analog modulators, which increase plasminogen activation but inhibit its binding to fibrin, the nonlysine-analog modulators enhance both activation and fibrin binding of plasminogen. Here we show that some nonlysine-analog modulators promote autoproteolytic generation of plasmin(ogen) derivatives with its catalytic domain undergoing extensive fragmentation (PMDs), which have angiostatin-like anti-endothelial activity. The enhancement of urokinase-catalyzed plasminogen activation by SMTP-6 was followed by rapid inactivation of plasmin due to its degradation mainly in the catalytic domain, yielding PMD with a molecular mass ranging from 68 to 77 kDa. PMD generation was observed when plasmin alone was treated with SMTP-6 and was inhibited by the plasmin inhibitor aprotinin, indicating an autoproteolytic mechanism in PMD generation. Thioplabin B and complestatin, two other nonlysine-analog modulators, were also active in producing similar PMDs, whereas the lysine analog 6-aminohexanoic acid was inactive while it enhanced plasminogen activation. Peptide sequencing and mass spectrometric analyses suggested that plasmin fragmentation was due to cleavage at Lys615-Val616, Lys651-Leu652, Lys661-Val662, Lys698-Glu699, Lys708-Val709 and several other sites mostly in the catalytic domain. PMD was inhibitory to proliferation, migration and tube formation of endothelial cells at concentrations of 0.3,10 µg·mL,1. These results suggest a possible application of nonlysine-analog modulators in the treatment of cancer through the enhancement of endogenous plasmin(ogen) fragment formation. [source]


    Functional analysis of the C-terminal cytoplasmic region of the M-factor receptor in fission yeast

    GENES TO CELLS, Issue 3 2001
    Kouji Hirota
    Background Yeast mating-pheromone receptors facilitate the study of G protein-coupled signal transduction. To date, molecular dissection of the budding yeast ,-factor receptor has been done extensively, but little analysis has been performed with pheromone receptors of fission yeast, another genetically tractable yeast species. Results We analysed the fission yeast M-factor receptor Map3p. Truncation of the C-terminal 54 amino acids made Map3p dominant-negative over the wild-type. This form, called Map3-dn9p, was competent in the induction of pheromone-dependent gene expression, although it could not direct proper conjugation. Map3-dn9p failed both to provoke the orientated projection of conjugation tubes and to induce adaptation to the pheromone signal associated with endocytosis of the receptor. Deletion and substitution analyses suggested that the integrity of the C-terminal region, rather than a specific subgroup of amino acid residues therein, was vital for the respective Map3p activities. Ubiquitination of the C-terminus was not absolutely essential for Map3p function. Conclusions The C-terminal region of Map3p is dispensable for the pheromone signalling per se, but is pivotal for adaptation and pheromone-induced conjugation tube formation, as is true with the budding yeast ,-factor receptor. However, the mechanisms which induce adaptation appear to differ between fission and budding yeast concerning the necessity of ubiquitination. [source]


    Radiation-induced HIF-1, cell survival pathway is inhibited by soy isoflavones in prostate cancer cells

    INTERNATIONAL JOURNAL OF CANCER, Issue 7 2009
    Vinita Singh-Gupta
    Abstract We previously showed that treatment of prostate cancer cells with soy isoflavones and radiation resulted in greater cell killing in vitro, and caused downregulation of NF-,B and APE1/Ref-1. APE1/Ref-1 functions as a redox activator of transcription factors, including NF-,B and HIF-1,. These molecules are upregulated by radiation and implicated in radioresistance of cancer cells. We extended our studies to investigate the role of HIF-1, survival pathway and its upstream Src and STAT3 molecules in isoflavones and radiation interaction. Radiation induced phosphorylation of Src and STAT3 leading to induction of HIF-1,. Genistein, daidzein or a mixture of soy isoflavones did not activate this pathway. These data were observed both in PC-3 (AR-) and C4-2B (AR+) androgen-independent cell lines. Pretreatment with isoflavones inhibited Src/STAT3/HIF-1, activation by radiation and nuclear translocation of HIF-1,. These findings correlated with decreased expression of APE1/Ref-1 and DNA binding activity of HIF-1, and NF-,B. In APE1/Ref-1 cDNA transfected cells, radiation caused a greater increase in HIF-1, and NF-,B activities but this effect was inhibited by pretreatment with soy prior to radiation. Transfection experiments indicate that APE1/Ref-1 inhibition by isoflavones impairs the radiation-induced transcription activity of NF-,B and HIF-1,. This mechanism could result in the inhibition of genes essential for tumor growth and angiogenesis, as demonstrated by inhibition of VEGF production and HUVECs tube formation. Our novel findings suggest that the increased responsiveness to radiation mediated by soy isoflavones could be due to pleiotropic effects of isoflavones blocking cell survival pathways induced by radiation including Src/STAT3/HIF-1,, APE1/Ref-1 and NF-,B. © 2008 Wiley-Liss, Inc. [source]


    Inhibition of telomerase in the endothelial cells disrupts tumor angiogenesis in glioblastoma xenografts

    INTERNATIONAL JOURNAL OF CANCER, Issue 6 2008
    Maria Laura Falchetti
    Abstract Tumor angiogenesis is a complex process that involves a series of interactions between tumor cells and endothelial cells (ECs). In vitro, glioblastoma multiforme (GBM) cells are known to induce an increase in proliferation, migration and tube formation by the ECs. We have previously shown that in human GBM specimens the proliferating ECs of the tumor vasculature express the catalytic component of telomerase, hTERT, and that telomerase can be upregulated in human ECs by exposing these cells to GBM in vitro. Here, we developed a controlled in vivo assay of tumor angiogenesis in which primary human umbilical vascular endothelial cells (HUVECs) were subcutaneously grafted with or without human GBM cells in immunocompromised mice as Matrigel implants. We found that primary HUVECs did not survive in Matrigel implants, and that telomerase upregulation had little effect on HUVEC survival. In the presence of GBM cells, however, the grafted HUVECs not only survived in Matrigel implants but developed tubule structures that integrated with murine microvessels. Telomerase upregulation in HUVECs enhanced such effect. More importantly, inhibition of telomerase in HUVECs completely abolished tubule formation and greatly reduced survival of these cells in the tumor xenografts. Our data demonstrate that telomerase upregulation by the ECs is a key requisite for GBM tumor angiogenesis. © 2007 Wiley-Liss, Inc. [source]


    Combination of thalidomide and cisplatin in an head and neck squamous cell carcinomas model results in an enhanced antiangiogenic activity in vitro and in vivo

    INTERNATIONAL JOURNAL OF CANCER, Issue 8 2007
    Gergely P. Vasvari
    Abstract Thalidomide is an immunomodulatory, antiangiogenic drug. Although there is evidence that it might be more effective in combination with chemotherapy the exact mechanism of action is unclear. Therefore, we investigated its effect in combination with metronomically applied cisplatin in a xenotransplant mouse model characteristic for advanced head and neck squamous cell carcinomas, its possible synergistic action in vitro, and which tumor-derived factors might be targeted by thalidomide. Although thalidomide alone was ineffective, a combined treatment with low-dose cisplatin inhibited significant tumor growth, proliferation and angiogenesis in vivo as well as migration and tube formation of endothelial cells in vitro. Noteworthy, the latter effect was enhanced after coapplication of cisplatin in nontoxic doses. An inhibitory effect on tumor cell migration was also observed suggesting a direct antitumor effect. Although thalidomide alone did not influence cell proliferation, it augmented antiproliferative response after cisplatin application emphasizing the idea of a potentiated effect when both drugs are combined. Furthermore, we could show that antiangiogenic effects of thalidomide are related to tumor-cell derived factors including vascular endothelial growth factor, basic fibroblast growth factor, hepatocyte growth factor and Il-8 some known and with, granulocyte colony stimulating growth factor and granulocyte macrophage colony stimulating growth factor, some new target molecules of thalidomide. Altogether, our findings reveal new insights into thalidomide-mediated antitumor and antiangiogenic effects and its interaction with cytostatic drugs. © 2007 Wiley-Liss, Inc. [source]


    Inhibition of human vascular endothelial cells proliferation by terbinafine

    INTERNATIONAL JOURNAL OF CANCER, Issue 1 2004
    Pei-Yin Ho
    Abstract We have demonstrated previously that terbinafine (TB), an oral antifungal agent used in the treatment of superficial mycosis, suppresses proliferation of various cultured human cancer cells in vitro and in vivo by inhibiting DNA synthesis and activating apoptosis. In our study, we further demonstrated that TB at a range of concentrations (0,120 ,M) dose-dependently decreased cell number in cultured human umbilical vascular endothelial cells (HUVEC). Terbinafine was not cytotoxic at a concentration of 120 ,M, indicating that it may have an inhibitory effect on the cell proliferation in HUVEC. The TB-induced inhibition of cell growth rate is reversible. [3H]thymidine incorporation revealed that TB reduced the [3H]thymidine incorporation into HUVEC during the S-phase of the cell-cycle. Western blot analysis demonstrated that the protein levels of cyclin A, but not cyclins B, D1, D3, E, CDK2 and CDK4, decreased after TB treatment. The TB-induced cell-cycle arrest in HUVEC occurred when the cyclin-dependent kinase 2 (CDK2) activity was inhibited just as the protein level of p21 was increased and cyclin A was decreased. Pretreatment of HUVEC with a p21 specific antisense oligonucleotide reversed the TB-induced inhibition of [3H]thymidine incorporation. Taken together, these results suggest an involvement of the p21-associated signaling pathway in the TB-induced antiproliferation in HUVEC. Capillary-like tube formation and chick embryo chorioallantoic membrane (CAM) assays further demonstrated the anti-angiogenic effect of TB. These findings demonstrate for the first time that TB can inhibit the angiogenesis. © 2004 Wiley-Liss, Inc. [source]


    Two new lipoaminoacids with complementary modes of action: new prospects to fight out against skin aging

    INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 1 2010
    S. Dumont
    Synopsis The mode of action of two cosmetic active ingredients (AIs), palmitoyl glycine (PG) and cocoyl alanine (CA) was studied with cDNA array experiments and quantitative PCR confirmations, which were performed on experimentally aged human fibroblasts. These preliminary studies revealed complementary profiles. Thus, specific supplementary investigations were then carried out for each AI. Protocols used were based either on in vitro models: (i) biochemical assays, (ii) monolayer cell culture (primary human fibroblasts and keratinocytes) and (iii) the model of capillary-like tube formation by human endothelial cells or on ex vivo models, i.e. topically treated skin explants and both immunohistochemical and ChromameterTM investigations. New prospects are proposed to fight out against skin aging. Indeed, PG and CA showed complementary properties and thus enabled a regulation or a restoration effect on main aging-associated disorders. Thus, they can not only act on tissue architecture, cell,cell interactions and extracellular matrix protection but also on inflammation, cell longevity, skin immune system protection, skin radiance and stem cell survey. Finally, a clinical trial performed on Caucasian women confirmed AI anti-wrinkle efficacy, which was superior to that of a market reference ingredient. In the future, complementary experiments enabling a better understanding of the aging-induced decline of epidermal stem cells would be of a great interest. Résumé Le mode d'action de deux actifs cosmétiques, Palmitoyl glycine (PG) et Cocoyl Alanine (CA), a été déterminéà l'aide d'expériences de cDNA arrays et de confirmations par qPCR, réalisées sur des fibroblastes humains vieillis expérimentalement. Ces études préliminaires ont révélé des modes d'action complémentaires. Des expériences supplémentaires spécifiques ont donc ensuite été réalisées pour chaque actif. Les protocoles utilisés étaient basés sur des modèles in vitro: i) études biochimiques, ii) cultures cellulaires en monocouches (cultures primaires de fibroblastes et de kératinocytes humains) et iii) modèle de formation de pseudo-tubules par des cellules endothéliales humaines; ou sur des modèles ex-vivo, i.e. des explants de peau traités de manière topique et analysés à l'aide d'études immuno-histochimiques et d'un ChromamètreTM. De nouvelles perspectives s'ouvrent pour combattre le vieillissement cutané. En effet, PG et CA montrent des propriétés complémentaires et permettent ainsi une régulation ou une restauration des principaux dysfonctionnements liés à l'âge. Ainsi, ils peuvent agir non-seulement sur l'architecture des tissus, l'interaction entre les cellules et la protection de la matrice extracellulaire mais aussi sur l'inflammation, la longévité cellulaire, la survie des cellules souches, le système de protection immunitaire et l'éclat de la peau. Finalement, des essais cliniques réalisés sur des femmes de type Caucasien ont confirmé l'efficacité antirides des actifs, laquelle était supérieure à celle d'une référence anti-âge du marché. Dans un futur proche, des tests complémentaires pourraient permettre une meilleure compréhension de la dégradation des cellules souches épidermiques au cours du vieillissement. [source]


    The role of retinoic acid in the morphogenesis of the neural tube

    JOURNAL OF ANATOMY, Issue 4 2003
    L. Wilson
    Abstract We have examined the role of the signalling molecule, retinoic acid, in the process of neurulation and the subsequent growth and differentiation of the central nervous system using quail embryos that have developed in the absence of retinoic acid. Such retinoic acid-free embryos undergo abnormal neural tube formation in terms of its shape and structure, but the embryos do not display spina bifida or exencephaly. The neural tubes have a wider floor plate, a thicker roof plate and a different dorsoventral shape. Phalloidin staining and electron microscopy revealed alterations in the actin filaments and the junctional complexes of the cell layer lining the lumen. Initially the neural tubes proliferated at the same rate as normal, but later the proliferation rate declined drastically and neuronal differentiation was highly deficient. There were very few motoneurons extending neurites into the periphery, and within the neural tube axon trajectories were chaotic. These results reveal several functions for retinoic acid in the morphogenesis and growth of the neural tube, many of which can be explained by defective notochord signalling, but they do not suggest that this molecule plays a role in neural tube closure. [source]


    Cell and molecular mechanisms of insulin-induced angiogenesis

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 11-12 2009
    Yan Liu
    Abstract Angiogenesis, the development of new blood vessel from pre-existing vessels, is a key process in the formation of the granulation tissue during wound healing. The appropriate development of new blood vessels, along with their subsequent maturation and differentiation, establishes the foundation for functional wound neovasculature. We performed studies in vivo and used a variety of cellular and molecular approaches in vitro to show that insulin stimulates angiogenesis and to elucidate the signalling mechanisms by which this protein stimulates microvessel development. Mice skin injected with insulin shows longer vessels with more branches, along with increased numbers of associated ,-smooth muscle actin-expressing cells, suggesting the appropriate differentiation and maturation of the new vessels. We also found that insulin stimulates human microvascular endothelial cell migration and tube formation, and that these effects occur independently of VEGF/VEGFR signalling, but are dependent upon the insulin receptor itself. Downstream signalling pathways involve PI3K, Akt, sterol regulatory element-binding protein 1 (SREBP-1) and Rac1; inhibition of these pathways results in elimination of endothelial cell migration and tube formation and significantly decreases the development of microvessels. Our findings strongly suggest that insulin is a good candidate for the treatment of ischaemic wounds and other conditions in which blood vessel development is impaired. [source]


    Mechanical load induced by glass microspheres releases angiogenic factors from neonatal rat ventricular myocytes cultures and causes arrhythmias

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 5b 2008
    D. Y. Barac
    Abstract In the present study, we tested the hypothesis that similar to other mechanical loads, notably cyclic stretch (simulating pre-load), glass microspheres simulating afterload will stimulate the secretion of angiogenic factors. Hence, we employed glass microspheres (average diameter 15.7 ,m, average mass 5.2 ng) as a new method for imposing mechanical load on neonatal rat ventricular myocytes (NRVM) in culture. The collagen-coated microspheres were spread over the cultures at an estimated density of 3000 microspheres/mm2, they adhered strongly to the myocytes, and acted as small weights carried by the cells during their contraction. NRVM were exposed to either glass microspheres or to cyclic stretch, and several key angiogenic factors were measured by RT-PCR. The major findings were: (1) In contrast to other mechanical loads, such as cyclic stretch, microspheres (at 24 hrs) did not cause hypertrophy. (2) Further, in contrast to cyclic stretch, glass microspheres did not affect Cx43 expression, or the conduction velocity measured by means of the Micro-Electrode-Array system. (3) At 24 hrs, glass microspheres caused arrhythmias, probably resulting from early afterdepolarizations. (4) Glass microspheres caused the release of angiogenic factors as indicated by an increase in mRNA levels of vascular endothelial growth factor (80%), angiopoietin-2 (60%), transforming growth factor-, (40%) and basic fibroblast growth factor (15%); these effects were comparable to those of cyclic stretch. (5) As compared with control cultures, conditioned media from cultures exposed to microspheres increased endothelial cell migration by 15% (P<0.05) and endothelial cell tube formation by 120% (P<0.05), both common assays for angiogenesis. In conclusion, based on these findings we propose that loading cardiomyocytes with glass microspheres may serve as a new in vitro model for investigating the role of mechanical forces in angiogenesis and arrhythmias. [source]


    Cholinergic modulation of angiogenesis: Role of the 7 nicotinic acetylcholine receptor

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2009
    Jenny C.F. Wu
    Abstract Pathological angiogenesis contributes to tobacco-related diseases such as malignancy, atherosclerosis and age-related macular degeneration. Nicotine acts on endothelial nicotinic acetylcholine receptors (nAChRs) to activate endothelial cells and to augment pathological angiogenesis. In the current study, we studied nAChR subunits involved in these actions. We detected mRNA for all mammalian nAChR subunits except ,2, ,4, ,, and , in four different types of ECs. Using siRNA methodology, we found that the ,7 nAChR plays a dominant role in nicotine-induced cell signaling (assessed by intracellular calcium and NO imaging, and studies of protein expression and phosphorylation), as well as nicotine-activated EC functions (proliferation, survival, migration, and tube formation). The ,9 and ,7 nAChRs have opposing effects on nicotine-induced cell proliferation and survival. Our studies reveal a critical role for the ,7 nAChR in mediating the effects of nicotine on the endothelium. Other subunits play a modulatory role. These findings may have therapeutic implications for diseases characterized by pathological angiogenesis. J. Cell. Biochem. 108: 433,446, 2009. © 2009 Wiley-Liss, Inc. [source]


    2-oxoglutarate downregulates expression of vascular endothelial growth factor and erythropoietin through decreasing hypoxia-inducible factor-1, and inhibits angiogenesis

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2006
    Ken Matsumoto
    In oxygenated cells, hypoxia-inducible factor-1 (HIF-1) , subunits are rapidly degraded by a mechanism that involves ubiquitination by the von Hippel,Lindau tumor suppressor E3 ligase complex using 2-oxoglutarate as a substrate. We examined the effect of 2-oxoglutarate on the production of erythropoietin and vascular endothelial growth factor (VEGF). The expression of erythropoietin and VEGF protein were dose-dependently downregulated in Hep3B cells by the addition of 2-oxoglutarate. The promoter activity of VEGF-luciferase was dose-dependently downregulated by the addition of 2-oxoglutarate. Gel mobility shift assays revealed that the addition of 2-oxoglutarate dose-dependently inhibited HIF-1 binding activity, but did not affect GATA binding activity. Western blot analysis revealed that 2-oxoglutarate dose-dependently inhibited the HIF-1, protein level in Hep3B cells in hypoxic conditions. However, MG132 (the proteasome inhibitor) rescued the inhibition of HIF-1, protein expression by 2-oxoglutarate. Furthermore, under hypoxic conditions, 2-oxoglutarate dose-dependently inhibited tube formation in in vitro angiogenesis assays. These results indicate that 2-oxoglutarate treatment may be useful for the inhibition of angiogenesis. J. Cell. Physiol. 209: 333,340, 2006. © 2006 Wiley-Liss, Inc. [source]


    Vascular smooth muscle cell growth-promoting factor/F-spondin inhibits angiogenesis via the blockade of integrin ,v,3 on vascular endothelial cells

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2001
    Yoshito Terai
    Vascular smooth muscle cell growth-promoting factor (VSGP) was originally isolated from bovine ovarian follicular fluid as a stimulator of vascular smooth muscle cell proliferation. Homology searches indicate that bovine and human VSGPs are orthologs of rat F-spondin. Here, we examined whether recombinant human VSGP/F-spondin affected the biological activities of endothelial cells. VSGP/F-spondin did not affect the proliferation of human umbilical vein endothelial cells (HUVECs); however, it did inhibit VEGF- or bFGF-stimulated HUVEC migration. To clarify the mechanism of this inhibitory effect, we examined the adhesion of HUVECs to extracellular matrix proteins. VSGP/F-spondin specifically inhibited the spreading of HUVECs on vitronectin via the functional blockade of integrin ,v,3. As a result, VSGP/F-spondin inhibited the tyrosine phosphorylation of focal adhesion kinase (FAK) when HUVECs were plated on vitronectin. Moreover, VSGP/F-spondin inhibited the activation of Akt when HUVECs on vitronectin were stimulated with VEGF. VSGP/F-spondin inhibited tube formation by HUVECs in vitro and neovascularization in the rat cornea in vivo. These results indicate that VSGP/F-spondin inhibits angiogenesis at least in part by the blockade of endothelial integrin ,v,3. © 2001 Wiley-Liss, Inc. [source]


    Antiangiogenetic Effects of 4 Varieties of Grapes,In Vitro

    JOURNAL OF FOOD SCIENCE, Issue 6 2010
    Ming Liu
    Abstract:, The purpose of this study was to investigate the inhibitory effects of grapes on the human umbilical vein endothelial (HUVE) cells' capillary tube formation and matrix metalloproteinase-2 (MMP-2) expression secreted into the medium. Four different grape varieties (Concord, Niagara, Chardonnay, and Pinot Noir) were extracted using 80% acetone and the extracts were stored at ,80 °C. The total amount of phenolics and flavonoids for each of the 4 grape varieties were determined by spectrophotometry. Grape extracts were co-cultured with HUVE cells on Matrigel and inhibitory effects on tube formation were observed under a microscope. The inhibitory effects of grape extracts on MMP-2 expression were examined by zymogram. All 4 grape varieties inhibited the tube formation of HUVE cells in a dose-dependent manner on Matrigel. Except for Chardonnay, the other 3 grape varieties completely inhibited secretion of MMP-2 at 20 mg/mL. There was a significant positive relationship between the total phenolics and flavonoids and antiangiogenetic activities. The grapes tested have the potential to inhibit angiogenesis mainly by their phenolics and flavonoids contents, which partly contribute to their cancer chemopreventive efficacy. [source]


    Melatonin suppresses tumor angiogenesis by inhibiting HIF-1, stabilization under hypoxia

    JOURNAL OF PINEAL RESEARCH, Issue 2 2010
    Shi-Young Park
    Abstract:, Angiogenesis is an important mediator of tumor progression. As tumors expand, diffusion distances from the existing vascular supply increases, resulting in hypoxia in the cancer cells. Sustained expansion of a tumor mass requires new blood vessel formation to provide rapidly proliferating tumor cells with an adequate supply of oxygen and nutrients. The key regulator of hypoxia-induced angiogenesis is the transcription factor known as hypoxia-inducible factor (HIF)-1. HIF-1, is stabilized by hypoxia-induced reactive oxygen species (ROS) and enhances the expression of several types of hypoxic genes, including that of the angiogenic activator known as vascular endothelial cell growth factor (VEGF). In this study, we found that melatonin, a small lipophilic molecule secreted primarily by the pineal gland, destabilizes hypoxia-induced HIF-1, protein levels in the HCT116 human colon cancer cell line. This destabilization of HIF-1, resulted from the antioxidant activity of melatonin against ROS induced by hypoxia. Moreover, under hypoxia, melatonin suppressed HIF-1 transcriptional activity, leading to a decrease in VEGF expression. Melatonin also blocked in vitro tube formation and invasion and migration of human umbilical vein endothelial cells induced by hypoxia-stimulated conditioned media of HCT116 cells. These findings suggest that melatonin could play a pivotal role in tumor suppression via inhibition of HIF-1-mediated angiogenesis. [source]


    Antifungal activity of Thymus oils and their major compounds

    JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY & VENEREOLOGY, Issue 1 2004
    C Pina-Vaz
    ABSTRACT The increasing recognition and importance of fungal infections, the difficulties encountered in their treatment and the increase in resistance to antifungals have stimulated the search for therapeutic alternatives. Essential oils have been used empirically. The essential oils of Thymus (Thymus vulgaris, T. zygis subspecies zygis and T. mastichina subspecies mastichina) have often been used in folk medicine. The aim of the present study was to evaluate objectively the antifungal activity of Thymus oils according to classical bacteriological methodologies , determination of the minimal inhibitory concentration (MIC) and the minimal lethal concentration (MLC) , as well as flow cytometric evaluation. The effect of essential oils upon germ tube formation, an important virulence factor, was also studied. The mechanism of action was studied by flow cytometry, after staining with propidium iodide. The chemical composition of the essential oils was investigated by gas chromatography (GC) and gas chromatography/mass spectroscopy (GC/MS). The antifungal activity of the major components (carvacrol, thymol, p -cymene and 1,8-cineole) and also possible interactions between them were also investigated. The essential oils of T. vulgaris and T. zygis showed similar antifungal activity, which was greater than T. mastichina. MIC and MLC values were similar for all the compounds tested. At MIC values of the essential oils, propidium iodide rapidly penetrated the majority of the yeast cells, indicating that the fungicidal effect resulted primarily from an extensive lesion of the cell membrane. Concentrations below the MIC values significantly inhibited germ tube formation. This study describes the potent antifungal activity of the essential oils of Thymus on Candida spp., warranting future therapeutical trials on mucocutaneous candidosis. [source]


    Cleaved high molecular weight kininogen inhibits tube formation of endothelial progenitor cells via suppression of matrix metalloproteinase 2

    JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 1 2010
    Y. WU
    Summary.,Background and objective:,Endothelial progenitor cells (EPCs) contribute to postnatal neovascularization, thus promoting wide interest in their therapeutic potential in vascular injury and prevention of their dysfunction in cardiovascular diseases. Cleaved high molecular weight kininogen (HKa), an activation product of the plasma kallikrein-kinin system (KKS), inhibits the functions of differentiated endothelial cells including in vitro and in vivo angiogenesis. In this study, our results provided the first evidence that HKa is able to target EPCs and inhibits their tube forming capacity. Methods and results:,We determined the effect of HKa on EPCs using a three-dimensional vasculogenesis assay. Upon stimulation with vascular endothelial growth factor (VEGF) alone, EPCs formed vacuoles and tubes, and differentiated into capillary-like networks. As detected by gelatinolytic activity assay, VEGF stimulated secretion and activation of matrix metallopeptidase 2 (MMP-2), but not MMP-9, in the conditioned medium of 3D culture of EPCs. Specific inhibition or gene ablation of MMP-2, but not MMP-9, blocked the vacuole and tube formation by EPCs. Thus, MMP-2 is selectively required for EPC vasculogenesis. In a concentration-dependent manner, HKa significantly inhibited tube formation by EPCs and the conversion of pro-MMP-2 to MMP-2. Moreover, HKa completely blocked the association between pro-MMP-2 and ,v,3 integrin, and its inhibition of MMP-2 activation was dependent on the presence of ,v,3 integrin. In a purified system, HKa did not directly inhibit MMP-2 activity. Conclusions:,HKa inhibits tube forming capacity of EPCs by suppression of MMP-2 activation, which may constitute a novel link between activation of the KKS and EPC dysfunction. [source]


    Insulin-like growth factor binding protein-3 induces angiogenesis through IGF-I- and SphK1-dependent mechanisms

    JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 4 2007
    R. GRANATA
    Summary. Angiogenesis is critical for development and repair, and is a prominent feature of many pathological conditions. Based on evidence that insulin-like growth factor binding protein (IGFBP)-3 enhances cell motility and activates sphingosine kinase (SphK) in human endothelial cells, we have investigated whether IGFBP-3 plays a role in promoting angiogenesis. IGFBP-3 potently induced network formation by human endothelial cells on Matrigel. Moreover, it up-regulated proangiogenic genes, such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP)-2 and -9. IGFBP-3 even induced membrane-type 1 MMP (MT1-MMP), which regulates MMP-2 activation. Decreasing SphK1 expression by small interfering RNA (siRNA), blocked IGFBP-3-induced network formation and inhibited VEGF, MT1-MMP but not IGF-I up-regulation. IGF-I activated SphK, leading to sphingosine-1-phosphate (S1P) formation. The IGF-I effect on SphK activity was blocked by specific inhibitors of IGF-IR, PI3K/Akt and ERK1/2 phosphorylation. The disruption of IGF-I signaling prevented the IGFBP-3 effect on tube formation, SphK activity and VEGF release. Blocking ERK1/2 signaling caused the loss of SphK activation and VEGF and IGF-I up-regulation. Finally, IGFBP-3 dose-dependently stimulated neovessel formation into subcutaneous implants of Matrigel in vivo. Thus, IGFBP-3 positively regulates angiogenesis through involvement of IGF-IR signaling and subsequent SphK/S1P activation. [source]


    Aspirin and salicylate inhibit colon cancer medium- and VEGF-induced endothelial tube formation: correlation with suppression of cyclooxygenase-2 expression

    JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 10 2003
    M. I. Shtivelband
    Summary., To determine whether aspirin and salicylate suppress colon cancer cell-mediated angiogenesis, we evaluated the effects of aspirin and sodium salicylate on endothelial tube formation on Matrigel. Aspirin and sodium salicylate concentration-dependently inhibited human endothelial cell (EC) tube formation induced by conditioned medium collected from DLD-1, HT-29 or HCT-116 colon cancer cells. Aspirin and sodium salicylate at pharmacological concentrations were equally effective in blocking tube formation. Neutralizing antivascular endothelial growth factor (VEGF) antibodies blocked colon cancer medium-induced tube formation. VEGF receptor 2 but not receptor 1 antibodies inhibited tube formation to a similar extent as anti-VEGF antibodies. These results indicate that VEGF interaction with VEGF receptor 2 is the primary mechanism underlying colon cancer-induced angiogenesis. Aspirin or sodium salicylate inhibited VEGF-induced tube formation in a concentration-dependent manner comparable to that of inhibition of colon cancer medium-induced endothelial tube formation. It has been shown that cyclooxygenase-2 (COX-2) is pivotal in cancer angiogenesis. We found that colon cancer medium-induced COX-2 protein expression in EC and aspirin or sodium salicylate suppressed the cancer-induced COX-2 protein levels at concentrations correlated with those that suppressed endothelial tube formation. Furthermore, aspirin and sodium salicylate inhibited COX-2 expression stimulated by VEGF. These findings indicate that aspirin and other salicylate drugs at pharmacological concentrations inhibit colon cancer-induced angiogenesis which is correlated with COX-2 suppression. [source]


    Age-dependent vascular endothelial growth factor expression and angiogenic capability of bladder smooth muscle cells: implications for cell-seeded technology in bladder tissue engineering

    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 8 2009
    Joseph Azzarello
    Abstract Cell seeding technology is commonly used in the field of tissue engineering to enhance the performance of bioscaffolds and promote tissue regeneration. The age of cells used for ex vivo seeding to achieve maximal tissue regeneration has not been defined. Since rapid angiogenesis is the most critical step for tissue graft survival and success, we evaluated passage-dependent vascular endothelial growth factor (VEGF) expression in cultured smooth muscle cells (SMCs) obtained from urinary bladder and endothelial cell response to bladder SMCs. Levels of various VEGF isoforms mRNA expression and total VEGF secretion were determined by a semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR) and an enzyme-linked immunosorbent assay (ELISA) analysis, respectively. In vitro endothelial cell migration in Transwell® and capillary-like tube formation in MatrigelÔ were used to predict the ability of bladder SMCs to promote angiogenesis. VEGF produced by cultured bladder SMCs increased from passages 4 to 7, and decreased from passages 7 to 12 at both mRNA and protein levels. Endothelial cell migration as well as capillary-like tube formation correlated with levels of VEGF expression by bladder SMCs. Pre-incubation of endothelial cells with a VEGF receptor 1/2 inhibitor, SU5416, significantly reduced the number of capillary-like tubes in SMC-endothelial cell MatrigelÔ co-culture, and confirmed the involvement of VEGF in endothelial cell tube formation. Our results demonstrate that cell passage number is related to levels of VEGF production, which may translate to angiogenesis in engineered tissues. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    The biology and functional morphology of Humphreyia strangei (Bivalvia: Anomalodesmata: Clavagellidae): an Australian cemented ,watering pot' shell

    JOURNAL OF ZOOLOGY, Issue 1 2002
    Brian Morton
    Abstract Amongst the watering pot shells of the Clavagellidae (Anomalodesmata), the least well known is Humphreyia, with a single species H. strangei. Unlike representatives of the other extant clavagellid genera, i.e. Clavagella and Brechites, however, where juveniles are unknown, there is a single juvenile (plus adult specimens) of H. strangei available for study. The Clavagellidae contains the weirdest of all bivalves, encased in a huge (in proportion to the tiny juvenile shell) adventitious tube with an anterior ,watering pot'. The juvenile H. strangei is dimyarian with a large foot and byssal groove, and a large pedal gape; the entire body is enclosed within a bag-like periostracum-covered mantle cavity. Upon permanent residence, however, the anterior watering pot component of the adventitious tube is cemented to the chosen substratum, the adductor muscles are lost and the foot and pedal gape greatly reduced; the fourth pallial aperture closes and the pedal gape and the tubules of the watering pot are similarly occluded. Once cementation is achieved, further growth anteriorly is impossible and the adventitious tube is secreted posteriorly, to house the long siphons, and subsequently can be added to as growth increments. Anatomically, H. strangei has a typical anomalodesmatan arrangement of mantle cavity and digestive organs so that it is, probably, a suspension feeder. Inside the pericardium, however, is a pair of unique proprioreceptors which probably serve to monitor rectal tonus and thus control defecation, co-ordinated with siphonal retraction and extension. They probably also prevent over-filling of the capacious rectum. It is believed that cementation and adventitious tube formation occur at the time of sexual maturity and this change in lifestyle between juvenile and adult represents a form of metamorphosis , quite distinct from that which occurs in all bivalves between the pediveliger and juvenile stages , and seems to be unique to Humphreyia and probably Brechites. This family of anomalodesmatan bivalves is thus actually stranger than the already aberrant watering pot would suggest. [source]


    Comparison of standard phenotypic assays with a PCR method to discriminate Candida albicans and C. dubliniensis

    MYCOSES, Issue 1 2005
    B. Mähnß
    Summary In 1995, Candida dubliniensis was described as a new species in the genus Candida. Its close relationship to C. albicans has proved problematic in the identification of C. dubliniensis in clinical specimens. The objective of this study was to determine if reproducible differentiation between both species can be obtained by phenotypic assays. Therefore, 100 strains from 86 patients with the ability to produce chlamydospores were examined with different methods including API ID 32 C, colour development on CHROMagar, chlamydospore formation on Staib agar, growth at different temperatures and germ tube formation at 39 °C. Additionally, polymerase chain reaction (PCR) was used as gold standard. Six of the investigated strains were C. dubliniensis. The results suggest that there is still no single phenotypic method satisfactory to distinguish between C. albicans and C. dubliniensis. [source]


    Comparative evaluation of Candi Select test and conventional methods for identification of Candida albicans in routine clinical isolates

    MYCOSES, Issue 3-4 2002
    S. Foongladda
    Candida albicans; Identifizierung; Candi Select- Test; Bewertung. Summary. The Candi Select test (Sanofi Diagnostics, Pasteur, Marnes-La-Coquette, France) is a new yeast-selective medium for the identification of Candida albicans in the clinical laboratory. The performance of this test was compared with the conventional methods of chlamydospore formation, germ tube formation and carbohydrate fermentation. Four hundred and twenty clinical yeast isolates from 412 fresh clinical specimens, including 283 C. albicans, 59 C. tropicalis, 39 Trichosporon spp., 19 C. glabrata, 11 Cryptococcus neoformans and 9 other yeasts, were evaluated. Colonies of C. albicans produced a blue-green colour on the Candi Select media which could be distinguished from the other yeasts with the naked eye within 24,48 h. The sensitivity and specificity of the Candi Select test for the identification of C. albicans were 99.65% and 97.08%, respectively. The blue-green colonies of C. albicans were easy to identify and recognize in mixed cultures and did not need detailed microscopic examination. Zusammenfassung., Der Candi Select-Test (Sanofi Diagnostics Pasteur, Marnes-La-Coquette, Frankreich) ist ein neuer selektiver Nährboden für die Identifizierung von Candida albicans im klinischen Labor. Die neue Methode wurde mit den konventionellen Methoden der Chlamydosporenbildung, der Keimschlauchbildung und der Kohlenhydrat-Gärung verglichen. Vierhundertzwanzig Hefeisolate, nämlich 283 C. albicans, 59 Candida tropicalis, 39 Trichosporon spp., 19 Candida glabrata, 11 Cryptococcus neoformans und 9 andere Hefen, isoliert aus 412 frischen klinischen Untersuchungsproben, wurden mit allen Methoden untersucht. Mit blossem Auge erkennbar, unterschieden sich innerhalb von 24,48 Stunden die blau-grünen Farbkolonien von C. albicans von allen anderen Hefen auf dem Candi Select Nährboden. Sensitivität und Spezifizität des Candi Select Tests für die Identifizierung von C. albicans betrugen 99.65% und 97.08%. Die blau-grünen Farbkolonien von C. albicans waren in den Mischkulturen leicht zu identifizieren, eine mikroskopische Untersuchung erübrigt sich daher. [source]


    Development of the vertebrate central nervous system: formation of the neural tube

    PRENATAL DIAGNOSIS, Issue 4 2009
    Nicholas D. E. Greene
    Abstract The developmental process of neurulation involves a series of coordinated morphological events, which result in conversion of the flat neural plate into the neural tube, the primordium of the entire central nervous system (CNS). Failure of neurulation results in neural tube defects (NTDs), severe abnormalities of the CNS, which are among the commonest of congenital malformations in humans. In order to gain insight into the embryological basis of NTDs, such as spina bifida and anencephaly, it is necessary to understand the morphogenetic processes and molecular mechanisms underlying neural tube closure. The mouse is the most extensively studied mammalian experimental model for studies of neurulation, while considerable insight into underlying developmental mechanisms has also arisen from studies in other model systems, particularly birds and amphibians. We describe the process of neural tube formation, discuss the cellular mechanisms involved and highlight recent findings that provide links between molecular signaling pathways and morphogenetic tissue movements. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Fibroblast Growth Factor 2 Promotes Endothelial Differentiation of Adipose Tissue-Derived Stem Cells

    THE JOURNAL OF SEXUAL MEDICINE, Issue 4 2009
    Hongxiu Ning PhD
    ABSTRACT Introduction., Adipose tissue-derived stem cells (ADSC) could potentially restore endothelial function in vasculogenic erectile dysfunction (ED). The mechanism for ADSC endothelial differentiation remained unidentified. Aim., To test whether ADSC could differentiate into endothelial cells in the penis and to identify the underlying mechanism of ADSC endothelial differentiation. Methods., For in vivo endothelial differentiation, ADSC were labeled with bromodeoxyuridine (BrdU), injected into rat corpora cavernosa, and localized by immunofluorescence and phase-contrast microscopy. For in vitro endothelial differentiation, ADSC were grown in endothelial growth medium 2 (EGM2), stained for endothelial markers CD31, von Willebrand Factor (vWF), and endothelial nitric oxide synthase (eNOS), and assessed for the ability to form tube-like structures in Matrigel and to endocytose acetylated low-density lipoprotein (Ac-LDL). To identify factors that promote ADSC endothelial differentiation, ADSC were grown in various media, each of which contained a specific combination of supplemental factors and assessed for LDL-uptake. PD173074, a selective inhibitor of fibroblast growth factor 2 (FGF2) receptor, was used to confirm the importance of FGF2 signaling for ADSC endothelial differentiation. Main Outcome Measures., In vivo endothelial differentiation was assessed by immunofluorescence microscopy. In vitro endothelial differentiation was assessed by immunofluorescence, Matrigel tube formation, and Ac-LDL uptake. Results., Injected ADSC were localized to the sinusoid endothelium, some of which stained positive for both BrdU and endothelial antigen rat endothelial cell antigen. ADSC proliferated at a faster rate in EGM2 than in standard DMEM, expressed endothelial markers CD31, vWF, and eNOS, formed tube-like structures in Matrigel, and endocytosed Ac-LDL. These properties were greatly diminished when ADSC were grown in the absence of FGF2 but were unaffected when grown in the absence of vascular endothelial growth factor, insulin-like growth factor, or epidermal growth factor. Furthermore, ADSC displayed similar endothelial properties when grown in FGF2-supplemented basic medium as in EGM2. Finally, blockade of FGF2 signaling with PD173074 abrogated ADSC endothelial differentiation. Conclusions., ADSC could differentiate into endothelial cells in the penis. FGF2 signaling mediates ADSC endothelial differentiation. Ning H, Liu G, Lin G, Yang R, Lue TF, and Lin CS. FGF2 promotes endothelial differentiation of adipose tissue-derived stem cells. J Sex Med **;**:**,**. [source]


    Phosphatase inhibitors with anti-angiogenic effect in vitro

    APMIS, Issue 1 2010
    LENE SYLVEST
    Sylvest L, Bendiksen CD, Houen G. Phosphatase inhibitors with anti-angiogenic effect in vitro. APMIS 2010; 118: 49,59. Levamisole has previously been identified as an inhibitor of angiogenesis in vitro and in vivo, but the mechanism behind the anti-angiogenic behavior has not yet been established. However, one known effect of levamisole is the inhibition of alkaline phosphatase, and this fact encouraged us to test other phosphatase inhibitors for their anti-angiogenic effects by using the same method as used to identify levamisole: an ELISA-based co-culture angiogenesis assay giving quantitative and qualitative results. Historically, intracellular phosphatases have been associated with the downregulation of signaling pathways, and kinases with their upregulation, but lately, the phospatases have also been coupled to positive signaling, which is why inhibition of phosphatases has become associated with anti-tumorigenic and anti-angiogenic effects. The results obtained in this work reveal several agents with anti-angiogenic potential and give a strong indication that phosphatase inhibition is linked to anti-angiogenic activity. An apparent disruption of endothelial tube formation was seen for seven of eight phosphatase inhibitors tested in the angiogenesis assay. By looking at the morphological results, it was seen that most of the inhibitors impaired proliferation and elongation of the endothelial cells, which still had a differentiated appearance. One inhibitor, PTP inhibitor IV, seemed to impair endothelial cell differentiation and induced the same morphology as when cells were treated with levamisole, although at a 200 times lower concentration than that of levamisole. Hence, our work points out compounds with a potential that may be of use in the search for new medical products for the treatment of malignant tumors, or other conditions where angiogenesis plays a central role. [source]


    Low-molecular-weight heparins and angiogenesis,

    APMIS, Issue 2 2006
    KLAS NORRBY
    The involvement of the vascular system in malignancy encompasses not only angiogenesis, but also systemic hypercoagulability and a pro-thrombotic state, and there is increasing evidence that pathways of blood coagulation and angiogenesis are reciprocally linked. In fact, cancer atients often display hypercoagulability resulting in markedly increased thromboembolism, which requires anti-coagulant treatment using heparins, for example. Clinical trials reveal that treatment with various low-molecular-weight heparins (LMWHs) improves the survival time in cancer patients receiving chemotherapy compared with those receiving unfractionated standard heparin (UFH) or no heparin treatment, as well as in cancer patients receiving LMWH as thrombosis prophylaxis during primary surgery. This anti-tumor effect of the heparins appears to be unrelated to their anti-coagulant activity, but the mechanisms involved are not fully understood. Tumor growth and spread are dependent on angiogenesis and it is noteworthy that the most potent endogenous pro- and anti-angiogenic factors are heparin-binding proteins that may be affected by systemic treatment with heparins. Heparin and other glycosaminoglycans play a role in vascular endothelial cell function, as they are able to modulate the activities of angiogenic growth factors by facilitating the interaction with their receptor and promoting receptor activation. To date, preclinical studies have demonstrated that only LMWH fragments produced by the heparinase digestion of UFH, i.e. tinzaparin, exert anti-angiogenic effects in any type of tissue in vivo. These effects are fragment-mass-specific and angiogenesis-type-specific. Data on the effect of various LMWHs and UFH on endothelial cell capillary tube formation and proliferation in vitro are also presented. We hope that this paper will stimulate and facilitate future research designed to elucidate whether the anti-angiogenic or anti-tumor effects of commercial LMWHs in their own right are agent specific and whether anti-angiogenic properties increase the anti-tumor properties of the LMWHs in the clinic. [source]


    Modulation of the angiogenic phenotype of normal and systemic sclerosis endothelial cells by gain,loss of function of pentraxin 3 and matrix metalloproteinase 12

    ARTHRITIS & RHEUMATISM, Issue 8 2010
    Francesca Margheri
    Objective Studies have shown that in systemic sclerosis (SSc) endothelial cells, overproduction of matrix metalloproteinase 12 (MMP-12) and pentraxin 3 (PTX3) is associated with defective angiogenesis. This study was undertaken to examine whether overexpression of the relevant molecules could inhibit angiogenesis of normal microvascular endothelial cells (MVECs), and whether silencing of these molecules in SSc MVECs could restore the lost angiogenic properties of the cells in vitro and in vivo. Methods Transient transfection of MVECs with human MMP12 and PTX3 was performed by electroporation. Silencing of MMP12 and PTX3 was obtained by treatment with small interfering RNA, and treatment effects were validated by Western blotting with specific antibodies and a fluorimetric assay. In vitro cell migration and capillary morphogenesis were studied on Matrigel substrates. In vivo angiogenesis was studied using a Matrigel sponge assay in mice. Results Transfection of MMP12 and PTX3 in normal MVECs resulted in loss of proliferation, invasion, and capillary morphogenesis in vitro, attributed to truncation of the urokinase-type plasminogen activator receptor by MMP12 and to the anti,fibroblast growth factor 2/anti,vascular endothelial growth factor activity of PTX3. These effects were particularly evident in mixed populations of transfected normal MVECs (50% transfected with MMP12 and 50% with PTX3). Silencing of the same molecules in SSc MVECs increased their invasion in Matrigel. Single-gene silencing did not increase the capillary morphogenesis of SSc MVECs, whereas double-gene,silenced cells showed a burst of capillary tube formation. Culture medium of silenced SSc MVECs stimulated angiogenesis in assays of Matrigel sponge invasion in mice. Conclusion Overexpression of either MMP12 or PTX3 in normal MVECs blunts their angiogenic properties. Loss of function of MMP12 and PTX3 in SSc MVECs restores the ability of the cells to produce capillaries in vitro and induces vascularization in vivo on a Matrigel sponge. [source]