Trivalent Chromium (trivalent + chromium)

Distribution by Scientific Domains


Selected Abstracts


N -acetylcysteine inhibits chromium hypersensitivity in coadjuvant chromium-sensitized albino guinea pigs by suppressing the effects of reactive oxygen species

EXPERIMENTAL DERMATOLOGY, Issue 8 2010
Bour-Jr Wang
Please cite this paper as: N -acetylcysteine inhibits chromium hypersensitivity in coadjuvant chromium-sensitized albino guinea pigs by suppressing the effects of reactive oxygen species. Experimental Dermatology 2010; 19: e191,e200. Abstract Background:, Chromium hypersensitivity is an important issue in occupational skin disease. When hexavalent chromium enters the cell, it can be reduced to trivalent chromium, resulting in the formation of reactive oxygen species (ROS). ROS are considered to play an important role in the progression of allergic contact dermatitis. N -acetylcysteine (NAC) could increase glutathione levels in the skin and act as an antioxidant. Aims:, We attempted to demonstrate that NAC could inhibit chromium hypersensitivity in a coadjuvant chromium-sensitized albino guinea pig model by counteracting the formation of ROS. Methods:, We utilized a coadjuvant chromium-sensitized albino guinea pig model to evaluate both the severity of the skin reaction by intradermal and epicutaneous elicitation tests and the sensitization rate of chromium hypersensitivity in NAC-treated and NAC-untreated albino guinea pigs (GP). Furthermore, three ROS parameters, including H2O2, malondialdehyde (MDA) levels in the skin and the oxygen radical absorbance capacity (ORAC) in plasma, were analyzed in NAC-treated and NAC-untreated coadjuvant chromium-sensitized albino GP. Results:, The severity of the skin reaction in the intradermal and epicutaneous elicitation test significantly diminished when the albino GP were treated with a dose of 1200 mg/kg/day of NAC. This dose also significantly decreased the sensitization rate of chromium hypersensitivity. In addition, treatment with 1200 mg/kg/day of NAC significantly reduced the H2O2 and MDA levels in the skin and significantly increased the ORAC in the plasma of albino GP. Therefore, NAC could be a potential chemopreventative agent to prevent the progression of chromium hypersensitivity. [source]


Various cells of the immune system and intestine differ in their capacity to reduce hexavalent chromium

FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 1 2003
Richa Shrivastava
Abstract The cells of the immune system form a strong line of defence against foreign substances. The present study was undertaken to investigate the capacity of different cells of Wistar rats to reduce potentially carcinogenic hexavalent chromium (Cr-VI) into less toxic trivalent chromium in vitro. 5×106 cells were incubated with 10 or 25 ,g ml,1 of Cr (VI) in the form of K2Cr2O7 at 37°C in the presence of 5% CO2 in air. At various time periods the remaining amount of Cr (VI) was measured and the percentage of Cr (VI) reduced was calculated. Among the single cell suspensions from the splenic cells a peak reduction of 55% was observed with the total spleen cells, 40% with the B-lymphocyte-enriched subpopulation, 10% with T-lymphocytes and 24% with the macrophages. The reduction by splenic and peritoneal macrophages was similar. Total thymocytes reduced 54% of the Cr (VI). Since the most common route of entry of chromium is through drinking water and food, intestinal cells were also investigated. Among the intestinal cells the maximum reduction of 100% (of 10 ,g ml,1) was observed with the upper villus cells and 72% with the middle villus cells while reduction was the least (4%) with the crypt cells. The reduction in the intestinal loop in situ was 100%. The time taken by each cell type for the peak reduction to Cr (VI) was markedly different. The findings thus show that the capacity of different cells in the body differs vastly in their capacity and time taken to reduce hexavalent chromium. The most efficient handling of Cr (VI) by the intestine, due to the presence of a variety of cells and bacteria, protects the body from its adverse effects. [source]


Elucidation of the percutaneous absorption of chromium compounds by functional proteomics

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 22 2009
Tai-Long Pan
Abstract Chromium compounds are known to be associated with cytotoxicity and carcinogenicity when applied via a skin route. The aim of this study was to evaluate the skin permeability and toxicological profiles of four chromium species. Chromium permeation across the skin, as determined by an in vitro Franz cell, decreased in the order of sodium chromate>potassium chromate>potassium dichromate>chromium nitrate. The uptake of chromium species within the skin generally showed a contrary trend to the results of permeation, although differences among the various compounds were not large. Levels of in vivo skin deposition of the four compounds showed no statistically significant differences. Potassium chromate produced the greatest disruption of the skin structure as determined by HE staining, followed in order by sodium chromate, potassium dichromate, and chromium nitrate. This indicates that hexavalent chromium elicited greater toxicity to the skin compared to trivalent chromium. A similar result was observed for the viability of skin fibroblasts. To improve our understanding of the molecular mechanisms leading to functional changes in proteins, proteomic tools, including 2-DE and MS techniques combined with sequence database correlations, were applied to identify target proteins altered by pathologic states. Eight protein spots, corresponding to cutaneous enzymes involved in energy metabolism and chaperon proteins, which were identified and discussed in this study, were associated with skin cytotoxicity, immunity, and carcinogenesis. In addition, functional proteomics of skin tissues may provide a promising tool for developing therapeutic strategies and can serve as the basis for further research. [source]


Metastable and stable states of xanthan polyelectrolyte complexes studied by atomic force microscopy

BIOPOLYMERS, Issue 3 2004
Gjertrud Maurstad
Abstract The compaction of the semiflexible polysaccharide xanthan with selected multi- and polyvalent cations was studied. Polyelectrolyte complexes prepared at concentrations of 1,2 ,g/ml were observed by tapping mode atomic force microscopy. High-molecular-weight xanthan compacted with chitosan yields a blend of mainly toroidal and metastable structures and a small fraction of rod-like species. Polyelectrolyte complexes of xanthan with polyethylenimine and trivalent chromium yielded similar structures or alternatively less well packed species. Racquet-type morphologies were identified as kinetically trapped states occurring on the folding path toward the energetically stable state of the toroids. Thermal annealing yielded a shift of the distribution of xanthan,chitosan morphologies toward this stable state. Ensembles of toroidal and rod-like morphologies of the xanthan,chitosan structures, collected using an asphericity index, were analyzed. The mean height of the toroids increased upon heating, with a selective increase in the height range above 2 nm. It is suggested that the observed metastable structures are formed from the high-molecular-weight fraction of xanthan and that these are driven toward the toroidal state, being a low-energy state, following annealing. Considered a model system for condensation of semiflexible polymers, the compaction of xanthan by chitosan captures the system at various stages in the folding toward a low-energy state and thus allows experimental analyses of these intermediates and their evolution. © 2004 Wiley Periodicals, Inc. Biopolymers, 2004 [source]