Trend Surface Analysis (trend + surface_analysis)

Distribution by Scientific Domains


Selected Abstracts


Mapping the geochemistry of the northern Rub' Al Khali using multispectral remote sensing techniques

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 7 2001
Kevin White
Abstract Spatial variations in sand sea geochemistry relate to mixing of different sediment sources and to variations in weathering. Due to problems of accessibility, adequate spatial coverage cannot be achieved using field surveys alone. However, maps of geochemical composition produced from remotely sensed data can be calibrated against limited field data and the results extrapolated over large, inaccessible areas. This technique is applied to part of the Rub' Al Khali in the northern United Arab Emirates. Trend surface analysis of the results suggests that the sand sea at this location can be modelled as an east,west mixing zone of two spectral components: terrestrial reddened quartz sands and marine carbonate sands. Optical dating of these sediments suggests that dune emplacement occurred rapidly around 10 ka BP, when sea level was rising rapidly. The spatial distribution of mineralogical components suggests that this phase of dune emplacement resulted from coastal dune sands being driven inland during marine transgression, thereby becoming mixed with rubified terrestrial sands. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Geographical and taxonomic influences on cranial variation in red colobus monkeys (Primates, Colobinae): introducing a new approach to ,morph' monkeys

GLOBAL ECOLOGY, Issue 2 2009
Andrea Cardini
ABSTRACT Aim, To provide accurate but parsimonious quantitative descriptions of clines in cranial form of red colobus, to partition morphological variance into geographical, taxonomic and structured taxonomic components, and to visually summarize clines in multivariate shape data using a method which produces results directly comparable to both univariate studies of geographical variation and standard geometric morphometric visualization of shape differences along vectors. Location, Equatorial Africa. Methods, Sixty-four three-dimensional cranial landmarks were measured on 276 adult red colobus monkeys sampled over their entire distribution. Geometric morphometric methods were applied, and size and shape variables regressed onto geographical coordinates using linear and curvilinear models. Model selection was done using the second-order Akaike information criterion. Components of variation related to geography, taxon or their combined effect were partitioned using partial regresssion. Multivariate trends in clinal shape were summarized using principal components of predictions from regressions, plotting vector scores on maps as for univariate size, and visualizing differences along main axes of clinal shape variation using surface rendering. Results, Significant clinal variation was found in size and shape. Clines were similar in females and males. Trend surface analysis tended to be more accurate and parsimonious than alternative models in predicting morphology based on geography. Cranial form was relatively paedomorphic in East Africa and peramorphic in central Africa. Most taxonomic variation was geographically structured. However, taxonomic differences alone accounted for a larger proportion of total explained variance in shape (up to 40%) than in size (, 20%). Main conclusions, A strong cline explained most of the observed size variation and a significant part of the shape differences of red colobus crania. The pattern of geographical variation was largely similar to that previously reported in vervets, despite different habitat preferences (arboreal versus terrestrial) and a long period since divergence (c. 14,15 Myr). This suggests that some aspects of morphological divergence in both groups may have been influenced by similar environmental, geographical and historical factors. Cranial size is likely to be evolutionarily more labile and thus better reflects the influence of recent environmental changes. Cranial shape could be more resilient to change and thus better reflects phylogenetically informative differences. [source]


Towards an integrated computational tool for spatial analysis in macroecology and biogeography

GLOBAL ECOLOGY, Issue 4 2006
Thiago Fernando L. V. B. Rangel
ABSTRACT Because most macroecological and biodiversity data are spatially autocorrelated, special tools for describing spatial structures and dealing with hypothesis testing are usually required. Unfortunately, most of these methods have not been available in a single statistical package. Consequently, using these tools is still a challenge for most ecologists and biogeographers. In this paper, we present sam (Spatial Analysis in Macroecology), a new, easy-to-use, freeware package for spatial analysis in macroecology and biogeography. Through an intuitive, fully graphical interface, this package allows the user to describe spatial patterns in variables and provides an explicit spatial framework for standard techniques of regression and correlation. Moran's I autocorrelation coefficient can be calculated based on a range of matrices describing spatial relationships, for original variables as well as for residuals of regression models, which can also include filtering components (obtained by standard trend surface analysis or by principal coordinates of neighbour matrices). sam also offers tools for correcting the number of degrees of freedom when calculating the significance of correlation coefficients. Explicit spatial modelling using several forms of autoregression and generalized least-squares models are also available. We believe this new tool will provide researchers with the basic statistical tools to resolve autocorrelation problems and, simultaneously, to explore spatial components in macroecological and biogeographical data. Although the program was designed primarily for the applications in macroecology and biogeography, most of sam's statistical tools will be useful for all kinds of surface pattern spatial analysis. The program is freely available at http://www.ecoevol.ufg.br/sam (permanent URL at http://purl.oclc.org/sam/). [source]


Conserving the evolutionary potential of California valley oak (Quercus lobata Née): a multivariate genetic approach to conservation planning

MOLECULAR ECOLOGY, Issue 1 2008
DELPHINE GRIVET
Abstract California valley oak (Quercus lobata Née) is a seriously threatened endemic oak species in California and a keystone species for foothill oak ecosystems. Urban and agricultural development affects a significant fraction of the species' range and predicted climate change is likely to dislocate many current populations. Here, we explore spatial patterns of multivariate genotypes and genetic diversity throughout the range of valley oak to determine whether ongoing and future patterns of habitat loss could threaten the evolutionary potential of the species by eradicating populations of distinctive genetic composition. This manuscript will address three specific questions: (i) What is the spatial genetic structure of the chloroplast and nuclear genetic markers? (ii) What are the geographical trends in the distribution of chloroplast and nuclear genotypes? (iii) Is there any part of the species' range where allelic diversity in either the chloroplast or nuclear genomes is particularly high? We analysed six chloroplast and seven nuclear microsatellite genetic markers of individuals widespread across the valley oak range. We then used a multivariate approach correlating genetic markers and geographical variables through a canonical trend surface analysis, followed by GIS mapping of the significant axes. We visualized population allelic richness spatially with GIS tools to identify regions of high diversity. Our findings, based on the distribution of multivariate genotypes and allelic richness, identify areas with distinctive histories and genetic composition that should be given priority in reserve network design, especially because these areas also overlap with landscape change and little degree of protection. Thus, without a careful preservation plan, valuable evolutionary information will be lost for valley oak. [source]