Home About us Contact | |||
Transporter Expression (transporter + expression)
Selected AbstractsAge-related changes in dopamine transporters and accumulation of 3-nitrotyrosine in rhesus monkey midbrain dopamine neurons: Relevance in selective neuronal vulnerability to degenerationEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2008N. M. Kanaan Abstract Aging is the strongest risk factor for developing Parkinson's disease (PD). There is a preferential loss of dopamine (DA) neurons in the ventral tier of the substantia nigra (vtSN) compared to the dorsal tier and ventral tegmental area (VTA) in PD. Examining age-related and region-specific differences in DA neurons represents a means of identifying factors potentially involved in vulnerability or resistance to degeneration. Nitrative stress is among the factors potentially underlying DA neuron degeneration. We studied the relationship between 3-nitrotyrosine (3NT; a marker of nitrative damage) and DA transporters [DA transporter (DAT) and vesicular monoamine transporter-2 (VMAT)] during aging in DA subregions of rhesus monkeys. The percentage of DA neurons containing 3NT increased significantly only in the vtSN with advancing age, and the vtSN had a greater percentage of 3NT-positive neurons when compared to the VTA. The relationship between 3NT and DA transporters was determined by measuring fluorescence intensity of 3NT, DAT and VMAT staining. 3NT intensity increased with advancing age in the vtSN. Increased DAT, VMAT and DAT/VMAT ratios were associated with increased 3NT in individual DA neurons. These results suggest nitrative damage accumulates in midbrain DA neurons with advancing age, an effect exacerbated in the vulnerable vtSN. The capacity of a DA neuron to accumulate more cytosolic DA, as inferred from DA transporter expression, is related to accumulation of nitrative damage. These findings are consistent with a role for aging-related accrual of nitrative damage in the selective vulnerability of vtSN neurons to degeneration in PD. [source] Microglial glutamate uptake is coupled to glutathione synthesis and glutamate releaseEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2006Mikael Persson Abstract The physiological function of microglial glutamate uptake has been debated as it is about 10% of that measured for astrocytes. This study addresses how glutamate, taken up from the extracellular space, is utilized by microglia. It was found that purified rat microglia incubated for 60 min with 3H-glutamate had an increased intracellular accumulation of 3H-glutamate after 12 h incubation with tumour necrosis factor alpha (TNF-,) but not after incubation with lipopolysaccharide (LPS). Furthermore, LPS- but not TNF-,-treated cells showed an increased efflux of 3H-labelled compounds, presumably glutamate through the XC, system and treatment with LPS or TNF-, increased the microglial glutathione concentrations and led to an increased incorporation of 3H-glutamate into glutathione. Depending on the stimuli, 3,6% of the total labelled contents were found in the form of glutathione and 25,35% in the form of glutamate. These results show that microglial glutamate uptake is directly coupled to glutathione synthesis and release of glutamate and/or glutamate metabolites. Additionally, the increased glutathione contents after LPS or TNF-, treatment were able to reduce microglial cell death after H2O2 challenge, showing a potential (self)-protective function for microglial glutamate transporter expression and glutathione synthesis. [source] Glutamate transporter expression in astrocytes of the rat dentate gyrus following lesion of the entorhinal cortexEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2001C. Hein Abstract The glutamate transporters GLT-1 and GLAST localized in astrocytes are essential in limiting transmitter signalling and restricting harmful receptor overstimulation. To show changes in the expression of both transporters following lesion of the entorhinal cortex (and degeneration of the glutamatergic tractus perforans), quantitative microscopic in situ hybridization (ISH) using alkaline-phosphatase-labelled oligonucleotide probes was applied to the outer molecular layer of the hippocampal dentate gyrus of rats (termination field of the tractus perforans). Four groups of rats were studied: sham-operated controls, and animals 3, 14 and 60 days following unilateral electrolytic lesion of the entorhinal cortex. The postlesional shrinkage of the terminal field of the perforant path, ipsilateral to the lesion side, was determined and considered in the evaluation of quantitative ISH data. Statistical analysis revealed that ipsilateral to the lesion side there was a significant decrease of the GLT-1 mRNA at every postlesional time-point and of the GLAST mRNA at 14 and 60 days postlesion. The maximal decrease was ,,45% for GLT-1 and ,,35% for GLAST. In the terminal field of the perforant path contralateral to the lesion side, no significant changes of ISH labelling were measured. The results were complemented by immunocytochemical data achieved using antibodies against synthetic GLT-1 and GLAST peptides. In accordance with ISH results, there was an obvious decrease of GLT-1 and GLAST immunostaining in the terminal field of the perforant path ipsilateral to the lesion side. From these data we conclude that, following a lesioning of the entorhinal cortex, the loss of glutamatergic synapses in the terminal field of the perforant path resulted in a strong downregulation of glutamate transporters in astrocytes. The decrease of synaptically released glutamate or of other neuronal factors could be involved in this downregulation. [source] Disruption of transport activity in a D93H mutant thiamine transporter 1, from a Rogers Syndrome familyFEBS JOURNAL, Issue 22 2003Dana Baron Rogers syndrome is an autosomal recessive disorder resulting in megaloblastic anemia, diabetes mellitus, and sensorineural deafness. The gene associated with this disease encodes for thiamine transporter 1 (THTR1), a member of the SLC19 solute carrier family including THTR2 and the reduced folate carrier (RFC). Using transient transfections into NIH3T3 cells of a D93H mutant THTR1derived from a Rogers syndrome family, we determined the expression, post-translational modification, plasma membrane targeting and thiamine transport activity. We also explored the impact on methotrexate (MTX) transport activity of a homologous missense D88H mutation in the human RFC, a close homologue of THTR1. Western blot analysis revealed that the D93H mutant THTR1 was normally expressed and underwent a complete N -glycosylation. However, while this mutant THTR1 was targeted to the plasma membrane, it was completely devoid of thiamine transport activity. Consistently, introduction into MTX transport null cells of a homologous D88H mutation in the hRFC did not result in restoration of MTX transport activity, thereby suggesting that D88 is an essential residue for MTX transport activity. These results suggest that the D93H mutation does not interfere with transporter expression, glycosylation and plasma membrane targeting. However, the substitution of this negatively charged amino acid (Asp93) by a positively charged residue (His) in an extremely conserved region (the border of transmembrane domain 2/intracellular loop 2) in the SLC19 family, presumably inflicts deleterious structural alterations that abolish thiamine binding and/or translocation. Hence, this functional characterization of the D93H mutation provides a molecular basis for Rogers syndrome. [source] Nucleoside transporter expression and function in cultured mouse astrocytesGLIA, Issue 1 2005Liang Peng Abstract Uptake of purine and pyrimidine nucleosides in astrocytes is important for several reasons: (1) uptake of nucleosides contributes to nucleic acid synthesis; (2) astrocytes synthesize AMP, ADP, and ATP from adenosine and GTP from guanosine; and (3) adenosine and guanosine function as neuromodulators, whose effects are partly terminated by cellular uptake. It has previously been shown that adenosine is rapidly accumulated by active uptake in astrocytes (Hertz and Matz, Neurochem Res 14:755,760, 1989), but the ratio between active uptake and metabolism-driven uptake of adenosine is unknown, as are uptake characteristics for guanosine. The present study therefore aims at providing detailed information of nucleoside transport and transporters in primary cultures of mouse astrocytes. Reverse transcription-polymerase chain reaction identified the two equilibrative nucleoside transporters, ENT1 and ENT2, together with the concentrative nucleoside transporter CNT2, whereas CNT3 was absent, and CNT1 expression could not be investigated. Uptake studies of tritiated thymidine, formycin B, guanosine, and adenosine (3-s uptakes at 1,4°C to study diffusional uptake and 1,60-min uptakes at 37°C to study concentrative uptake) demonstrated a fast diffusional uptake of all four nucleosides, a small, Na+ -independent and probably metabolism-driven uptake of thymidine (consistent with DNA synthesis), larger metabolism-driven uptakes of guanosine (consistent with synthesis of DNA, RNA, and GTP) and especially of adenosine (consistent with rapid nucleotide synthesis), and Na+ -dependent uptakes of adenosine (consistent with its concentrative uptake) and guanosine, rendering neuromodulator uptake independent of nucleoside metabolism. Astrocytes are accordingly well suited for both intense nucleoside metabolism and metabolism-independent uptake to terminate neuromodulator effects of adenosine and guanosine. © 2005 Wiley-Liss, Inc. [source] Multidrug resistance,associated proteins are crucial for the viability of activated rat hepatic stellate cells,,HEPATOLOGY, Issue 2 2008Rebekka A. Hannivoort Hepatic stellate cells (HSCs) survive and proliferate in the chronically injured liver. ATP-binding cassette (ABC) transporters play a crucial role in cell viability by transporting toxic metabolites or xenobiotics out of the cell. ABC transporter expression in HSCs and its relevance to cell viability and/or activation have not been reported so far. The aim of this study was to investigate the expression, regulation, and function of multidrug resistance,associated protein (Mrp)-type and multidrug resistance protein (Mdr),type ABC transporters in activated rat HSCs. Rat HSCs were exposed to cytokines or oxidative stress. ABC transporter expression was determined by quantitative polymerase chain reaction and immunohistochemistry. HSCs were exposed to the Mdr inhibitors verapamil and PSC-833 and the Mrp inhibitor MK571. Mdr and Mrp transporter function was evaluated with flow cytometry. Apoptosis was determined by activated caspase-3 and acridine orange staining, and necrosis was determined by Sytox green nuclear staining. An in vivo model of carbon tetrachloride (CCl4),induced liver fibrosis was used. With respect to hepatocytes, activated HSCs expressed high levels of Mrp1 and comparable levels of Mrp3, Mrp4, Mdr1a, and Mdr1b but not the hepatocyte-specific transporters bile salt export pump, Mrp2, and Mrp6. Mrp1 protein staining correlated with desmin staining in livers from CCl4 -treated rats. Mrp1 expression increased upon activation of HSCs. Cytokines induced Mdr1b expression only. Oxidative stress was not a major regulator of Mdr and Mrp transporter expression. Activated HSCs became necrotic when exposed to the Mrp inhibitors. Conclusion: Activated HSCs contain relatively high levels of Mrp1. Mrp-type transporters are required for the viability of activated HSCs. Mrp-dependent export of endogenous metabolites is important for the survival of activated HSCs in chronic liver diseases. (HEPATOLOGY 2008.) [source] Decreased expression of glutamate transporters in genetic absence epilepsy rats before seizure occurrenceJOURNAL OF NEUROCHEMISTRY, Issue 6 2002Magali Dutuit Abstract In absence epilepsy, epileptogenic processes are suspected of involving an imbalance between GABAergic inhibition and glutamatergic excitation. Here, we describe alteration of the expression of glutamate transporters in rats with genetic absence (the Genetic Absence Epilepsy Rats from Strasbourg: GAERS). In these rats, epileptic discharges, recorded in the thalamo-cortical network, appear around 40 days after birth. In adult rats no alteration of the protein expression of the glutamate transporters was observed. In 30-day-old GAERS protein levels (quantified by western blot) were lower in the cortex by 21% and 35% for the glial transporters GLT1 and GLAST, respectively, and by 32% for the neuronal transporter EAAC1 in the thalamus compared to control rats. In addition, the expression and activity of GLAST were decreased by 50% in newborn GAERS cortical astrocytes grown in primary culture. The lack of modification of the protein levels of glutamatergic transporters in adult epileptic GAERS, in spite of mRNA variations (quantified by RT-PCR), suggests that they are not involved in the pathogeny of spike-and-wave discharges. In contrast, the alteration of glutamate transporter expression, observed before the establishment of epileptic discharges, could reflect an abnormal maturation of the glutamatergic neurone,glia circuitry. [source] An Expanded Evaluation of the Relationship of Four Alleles to the Level of Response to Alcohol and the Alcoholism RiskALCOHOLISM, Issue 1 2005Xianzhang Hu Background: Alcoholism is a complex, genetically influenced disorder the cause of which may be better understood through the study of genetically influenced phenotypes that mediate the risk. One such intermediate phenotype is the low level of response (LR) to alcohol. This project used a case-control approach to search for genes that may contribute to LR. Methods: Data were available from alcohol challenges at approximately age 20 and regarding the development of alcohol use disorders over the subsequent 20 years for 85 men, including 40 reported in a previous genetic analysis. LR was evaluated using oral consumption of 0.75 ml/kg of alcohol, after which changes in subjective feelings of intoxication and body sway were measured. Alcohol abuse and dependence were diagnosed by DSM-III-R criteria through structured interviews administered to both the participant and an informant (usually the spouse) 10, 15, and 20 years after initial testing. Four polymorphisms were evaluated, including the serotonin transporter HTTLPR promoter ins/del, GABAA,6 Pro385Ser, NPY Leu7Pro, and catalase 262C>T. Two of these, HTTLPR and GABAA,6 Pro385Ser, had been previously associated with LR and alcoholism in a preliminary study. Results: The HTTLPR L allele was significantly related to both the LR and alcoholism in an allele-dosage (stepwise) manner. Furthermore, the association remained when L alleles were subdivided into recently reported functional subtypes: the lowest LR was associated with genotypes correlated with the highest serotonin transporter expression. The GABAA,6 Ser385 allele showed a nonsignificant trend for association to a low LR, as had been previously observed, although the Ser385 allele is uncommon, and only 18 heterozygotes were in the current group. However, the six men with both LL and Pro385/Ser385 genotypes had the lowest LR, and each had developed alcoholism during follow-up. Neither NPY nor catalase was associated with either LR or alcoholic outcomes, although the sample did not have sufficient power for definitive conclusions. Conclusions: This report strengthens the support for a relationship between the HTTLPR L and GABAA,6 Ser385 alleles to low alcohol LR and to alcoholism in a prospectively studied cohort evaluated for LR in young adulthood and before the onset of alcohol dependence. [source] Plasmalemmal and vesicular ,-aminobutyric acid transporter expression in the developing mouse retinaTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 2 2009Chenying Guo Immunoreactivity for the plasma membrane GABA transporter, GAT-3 (red), in a vertical section of adult mouse retina, with the Müller glia identified with CRALBP antibodies (green) and bipolar cell and some Müller cell somata with Chx10 antibodies (blue). J. Comp. Neurol. 512:6,26, 2009. © 2008 Wiley-Liss, Inc. [source] Plasmalemmal and vesicular ,-aminobutyric acid transporter expression in the developing mouse retinaTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2009Chenying Guo Immunoreactivity for the plasma membrane GABA transporter, GAT-3 (red), in a vertical section of adult mouse retina, with the Müller glia identified with CRALBP antibodies (green) and bipolar cell and some Müller cell somata with Chx10 antibodies (blue). J. Comp. Neurol. 512:6,26, 2009. © 2008 Wiley-Liss, Inc. [source] The impact of cytokines on the expression of drug transporters, cytochrome P450 enzymes and chemokine receptors in human PBMCBRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2009NJ Liptrott Mandarin translation of abstract Background and purpose:, The function of transporters in peripheral blood mononuclear cells (PBMC) has been characterized, but less is known about cytochrome P450 (CYP) enzyme function in these cells. Given that cytokines are dysregulated in many diseases, the purpose of this work was to assess the impact of cytokines on the expression of CYPs, transporters and chemokine receptors in PBMC. Experimental approach:, Human PBMC were incubated with cytokines for 48 h. ATP-binding cassette (ABC)B1, ABCC1, ABCC2, CYP2B6, CYP3A4, CXCR4 and CCR5 expression were measured by quantitative polymerase chain reaction and flow cytometry at 0, 4, 8, 24 and 48 h. Enzyme activity was assessed using fluorescent probes. Key results:, We show here functional activity of CYP3A4 and CYP2B6 in PBMC. Furthermore, cytokines had a significant impact on the mRNA and protein expression of all proteins. For example, interleukin-2 (IL-2) had a marked impact on ABCB1 mRNA (% control 4745 ± 11961) and protein (% control 200 ± 57). Increases in drug efflux transporter expression, in response to cytokines, resulted in reduced cellular accumulation of digoxin [decrease of 17% and 26% for IL-2 and interferon-, (IFN,) respectively] and saquinavir (decrease of 28% and 30% for IL-2 and IFN, respectively). The degree to which drug transporter and chemokine receptor expression changed in response to cytokines was positively correlated (e.g. ABCB1 and CXCR4, r2 = 0.545). Conclusions and implications:, These data have important implications for diseases in which cytokines are dysregulated and for which pharmacological intervention targets immune cells. Mandarin translation of abstract [source] Expression of water and ion transporters in tracheal aspirates from neonates with respiratory distressACTA PAEDIATRICA, Issue 11 2009Yanhong Li Abstract Aim:, The aim of the study was to determine whether neonatal respiratory distress is related to changes in water and ion transporter expression in lung epithelium. Methods:, The study included 32 neonates on mechanical ventilation: 6 patients with normal lung X-rays (control group), eight with respiratory distress syndrome (RDS), eight with transient tachypnea of the newborn (TTN), 10 with abnormal lung X-rays (mixed group). The protein abundance of water channel AQP5, epithelial sodium channel (ENaC; ,-, ,- and ,-ENaC) and Na+, K+ -ATPase ,1 were examined in tracheal aspirates using semiquantitative immunoblotting. Results:, ,-ENaC level was significantly lower in RDS group compared with infants with TTN and infants in the control group. AQP5 expression was significantly higher in TTN compared with the infants with RDS and all other infants with abnormal lung X-rays. Conclusion:, Neonatal respiratory distress is associated with changes in ,-ENaC and AQP5 expression. The lower ,-ENaC expression may be one of the factors that predispose to the development of RDS. The higher AQP5 expression may provide the possibility for reabsorption of postnatal lung liquid, which contributes to quick recovery of infants with TTN. [source] Epileptogenic roles of astroglial death and regeneration in the dentate gyrus of experimental temporal lobe epilepsyGLIA, Issue 4 2006Tae-Cheon Kang Abstract Recent studies have demonstrated that blockade of neuronal death in the hippocampus cannot prevent epileptogenesis in various epileptic models. These reports indicate that neurodegeneration alone is insufficient to cause epilepsy, and that the role of astrocytes in epileptogenesis should be reconsidered. Therefore, the present study was designed to elucidate whether altered morphological organization or the functionalities of astrocytes induced by status epilepticus (SE) is responsible for epileptogenesis. Glial responses (reactive microgliosis followed by astroglial death) in the dentate gyrus induced by pilocarpine-induced SE were found to precede neuronal damage and these alterations were closely related to abnormal neurotransmission related to altered vesicular glutamate and GABA transporter expressions, and mossy fiber sprouting in the dentate gyrus. In addition, newly generated astrocytes showed down-regulated expressions of glutamine synthase, glutamate dehydrogenase, and glial GABA transporter. Taken together, our findings suggest that glial responses after SE may contribute to epileptogenesis and the acquisition of the properties of the epileptic hippocampus. Thus, we believe that it is worth considering new therapeutic approaches to epileptogenesis involving targeting the inactivation of microglia and protecting against astroglial loss. © 2006 Wiley-Liss, Inc. [source] Cholangiocyte bile salt transporters in cholesterol gallstone,susceptible and resistant inbred mouse strainsJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 10 2008Julia J Liu Abstract Background and Aim:, We investigated the dietary and gender influences on the expression and functionality of cholangiocyte bile salt transporters and development of biliary hyperplasia in cholesterol gallstone-susceptible C57L/J and resistant AKR/J mice. Methods:, C57L and AKR mice were fed chow, a lithogenic diet, or a cholic acid-containing diet for 14 days. Expression of cholangiocyte bile salt transporter proteins ASBT (SLC10A2), ILBP (FABP6), and MRP3 (ABCC3) were studied by Western blot analysis. Taurocholate uptake studies were performed using microperfusion of isolated bile duct units. The pre- and post-perfusion taurocholate concentrations were analyzed by high performance liquid chromatography. Biliary proliferation in liver sections was scored. Results:, The lithogenic diet induced ductular proliferation in C57L mice. On chow, SLC10A2 and ABCC3 were overexpressed in male and female C57L compared to AKR mice. A lithogenic diet reduced the expressions of FABP6 in both male and female C57L mice, SLC10A2 in female C57L mice, and ABCC3 in male C57L mice. These alterations in transporter expressions were not associated with changes in taurocholate uptake. The lithogenic diet induced biliary hyperplasia and reduced bile salt transporter expressions in C57L mice. Conclusions:, Although bile salt uptake was not increased in the bile duct unit, we speculate that the biliary hyperplasia on the lithogenic diet may lead to an increase in intrahepatic bile salt recycling during cholesterol cholelithogenesis. [source] |