Transport Requirements (transport + requirement)

Distribution by Scientific Domains


Selected Abstracts


Nanomaterials for Neural Interfaces

ADVANCED MATERIALS, Issue 40 2009
Nicholas A. Kotov
Abstract This review focuses on the application of nanomaterials for neural interfacing. The junction between nanotechnology and neural tissues can be particularly worthy of scientific attention for several reasons: (i) Neural cells are electroactive, and the electronic properties of nanostructures can be tailored to match the charge transport requirements of electrical cellular interfacing. (ii) The unique mechanical and chemical properties of nanomaterials are critical for integration with neural tissue as long-term implants. (iii) Solutions to many critical problems in neural biology/medicine are limited by the availability of specialized materials. (iv) Neuronal stimulation is needed for a variety of common and severe health problems. This confluence of need, accumulated expertise, and potential impact on the well-being of people suggests the potential of nanomaterials to revolutionize the field of neural interfacing. In this review, we begin with foundational topics, such as the current status of neural electrode (NE) technology, the key challenges facing the practical utilization of NEs, and the potential advantages of nanostructures as components of chronic implants. After that the detailed account of toxicology and biocompatibility of nanomaterials in respect to neural tissues is given. Next, we cover a variety of specific applications of nanoengineered devices, including drug delivery, imaging, topographic patterning, electrode design, nanoscale transistors for high-resolution neural interfacing, and photoactivated interfaces. We also critically evaluate the specific properties of particular nanomaterials,including nanoparticles, nanowires, and carbon nanotubes,that can be taken advantage of in neuroprosthetic devices. The most promising future areas of research and practical device engineering are discussed as a conclusion to the review. [source]


Plastidic metabolite transporters and their physiological functions in the inducible crassulacean acid metabolism plant Mesembryanthemum crystallinum

THE PLANT JOURNAL, Issue 3 2000
Rainer E. Häusler
Summary The inducible crassulacean acid metabolism (CAM) plant Mesembryanthemum crystallinum accumulates malic acid during the night and converts it to starch during the day via a pathway that, because it is located in different subcellular compartments, depends on specific metabolite transport across membranes. The chloroplast glucose transporter (pGlcT) and three members of the phosphate translocator (PT) family were isolated. After induction of CAM, transcript amounts of the phosphoenolpyruvate (PEP) phosphate translocator (PPT) and the glucose-6-phosphate (Glc6P) phosphate translocator (GPT) genes were increased drastically, while triose phosphate (TP) phosphate translocator (TPT) and the pGlcT transcripts remained unchanged. PPT- and GPT-specific transcripts and transporter activities exhibited a pronounced diurnal variation, displaying the highest amplitude in the light. pGlcT transcripts were elevated towards the end of the light period and at the beginning of the dark period. These findings, combined with diurnal variations of enzyme activities and metabolite contents, helped to elucidate the roles of the PPT, GPT, TPT and pGlcT in CAM. The main function of the PPT is the daytime export from the stroma of PEP generated by pyruvate orthophosphate:dikinase (PPDK). The increased transport activity of GPT in the light suggests a higher requirement for Glc6P import for starch synthesis rather than starch mobilization. Most likely, Glc6P rather than 3-phosphoglycerate or triose phosphates is the main substrate for daytime starch biosynthesis in M. crystallinum plants in which CAM has been induced (CAM-induced), similar to non-green plastids. In the dark, starch is mobilized both phosphorylytically and amylolytically and the products are exported by the GPT, TPT and pGlcT. The transport activities of all three phosphate translocators and the transcript amounts of the pGlcT adapt to changing transport requirements in order to maintain high metabolic fluxes during the diurnal CAM cycle. [source]


Ethernet aggregation and core network models for effcient and reliable IPTV services

BELL LABS TECHNICAL JOURNAL, Issue 1 2007
Christian Hermsmeyer
With the growing interest on wireline network architectures for residential triple-play and business Ethernet services there is a renewed demand for efficient and reliable packet-based transport capabilities between the content providers and the end users. Voice and data traffic carried over a variety of access technologies is collected via technology-specific access networks (e.g., digital subscriber line [xDSL], passive optical network [xPON], and wireless fidelity [WiFi]). Metro and core networks need to aggregate the various user flows from different access network nodes and provide scalable and cost-effective distribution of various flow types (e.g., Internet access, voice, video on demand, and broadcast TV services) to the relevant service access points. Varying quality of service and resiliency requirements for these services are being reflected in a new breed of converged Ethernet and optical network elements with capabilities to interwork the bearer-planes of these two networking technologies seamlessly. Network elements based on Ethernet/Optical converged technology are able to select the most fitting mechanisms from each networking technology to meet the transport requirements for each individual service demand better while providing significantly enhanced implementation and operational efficiencies. This paper discusses network architecture models and network elements addressing these goals. © 2007 Alcatel-Lucent. [source]


Windows of operation for bioreactor design for the controlled formation of tissue-engineered arteries

BIOTECHNOLOGY PROGRESS, Issue 3 2009
Spyridon Gerontas
Abstract The availability of large numbers of units of artificial arteries would offer significant benefits to the clinical management of bypass surgery. Tissue engineering offers the potential of providing vessels that can mimic the morphology, function, and physiological environment of native vessels. Ideally this would involve culturing stem cells in vitro within a biodegradable tubular scaffold so as to construct tissue for implantation. Essential to establishing a robust process for the production of tissue-engineered arteries is the understanding of the impact of changes in the operating conditions and bioreactor design on the construct formation. In this article, models of transport phenomena were developed to predict the critical flow rates and mass transfer requirements of a prototype bioreactor for the formation of tissue-engineered arteries. The impact of the cell concentration, tube geometry, oxygen effective diffusivity in alginate, substrate and metabolite concentration levels, feed rate, and recycle rate on the design of the bioreactor was visualized using windows of operation and contour plots. The result of this analysis determined the best configuration of the bioreactor that meets the cellular transport requirements as well as being reliable in performance while seeking to reduce the amount of nutrients to be used. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]