Home About us Contact | |||
Transmembrane Regions (transmembrane + regions)
Selected AbstractsDefining the membrane proteome of NK cellsJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 1 2010Dhimankrishna Ghosh Abstract The present study was initiated to define the composition of the membrane proteome of the Natural Killer (NK) like cell line YTS. Isolated membranes were treated with reagents that have been reported to remove peripheral membrane proteins. Additional steps involving trifluoroethanol (TFE) were introduced in an effort to remove remaining nonintegral membrane proteins. This treatment resulted in the release of a subset of proteins without any apparent disruption of membrane integrity. The membranes were solubilized and digested with trypsin in 25% TFE. The resulting peptides were separated using an off-line two-dimensional reversed phase LC technique at alkaline and acidic pHs. Mass spectrometric analysis identified 1843 proteins with high confidence scores. On the basis of the presence of transmembrane regions or evidence of posttranslational modifications and prediction algorithms, approximately 40% of the identified proteins were predicted as plausible membrane proteins. The remaining species were largely involved in cellular processes and molecular functions that could be predicted to be transiently associated with membranes. The analytical approaches presented in this study offer robust generic methods for the identification and characterization of membrane proteins. These observations highlight the fact that the membrane is a dynamic entity that is composed of integral and stably associated proteins. Copyright © 2009 John Wiley & Sons, Ltd. [source] The C-terminal C1 cassette of the N -methyl- d -aspartate receptor 1 subunit contains a bi-partite nuclear localization sequenceJOURNAL OF NEUROCHEMISTRY, Issue 6 2002K. D. Holmes Abstract The N -methyl- d -aspartate receptor (NMDAR) is a multimeric transmembrane protein composed of at least two subunits. One subunit, NR1, is derived from a single gene and can be subdivided into three regions: the N-terminal extracellular domain, the transmembrane regions, and the C-terminal intracellular domain. The N-terminal domain is responsible for Mg2+ metal ion binding and channel activity, while the transmembrane domains are important for ion channel formation. The intracellular C-terminal domain is involved in regulating receptor activity and subcellular localization. Our recent experiments indicated that the intracellular C-terminal domain, when expressed independently, localizes almost exclusively in the nucleus. An examination of the amino acid sequence reveals the presence of a putative nuclear localization sequence (NLS) in the C1 cassette of the NR1 intracellular C-terminus. Using an expression vector designed to test whether a putative NLS sequence is a valid, functional NLS, we have demonstrated that a bi-partite NLS does in fact exist within the NR1-1 C-terminus. Computer algorithms identified a putative helix,loop,helix motif that spanned the C0C1 cassettes of the C-terminus. These data suggest that the NR1 subunit may represent another member of a family of transmembrane proteins that undergo intramembrane proteolysis, releasing a cytosolic peptide that is actively translocated to the nucleus leading to alterations in gene regulation. [source] Prediction of the transmembrane regions of ,-barrel membrane proteins with a neural network-based predictorPROTEIN SCIENCE, Issue 4 2001Irene Jacoboni Abstract A method based on neural networks is trained and tested on a nonredundant set of ,-barrel membrane proteins known at atomic resolution with a jackknife procedure. The method predicts the topography of transmembrane , strands with residue accuracy as high as 78% when evolutionary information is used as input to the network. Of the transmembrane ,-strands included in the training set, 93% are correctly assigned. The predictor includes an algorithm of model optimization, based on dynamic programming, that correctly models eight out of the 11 proteins present in the training/testing set. In addition, protein topology is assigned on the basis of the location of the longest loops in the models. We propose this as a general method to fill the gap of the prediction of ,-barrel membrane proteins. [source] Notch: Implications of endogenous inhibitors for therapyBIOESSAYS, Issue 6 2010Ivan Dikic Abstract Soluble components of Notch signalling can be applied to manipulate a central pathway essential for the development of metazoans and often deregulated in illnesses such as stroke, cancer or cardiovascular diseases. Commonly, the Notch cascade is inhibited by small compound inhibitors, which either block the proteolysis of Notch receptors by ,-secretases or interfere with the transcriptional activity of the Notch intracellular domain. Specific antibodies can also be used to inhibit ligand-induced activation of Notch receptors. Alternatively, naturally occurring endogenous inhibitors of Notch signalling might offer a specific way to block receptor activation. Examples are the soluble variants of the canonical Notch ligand Jagged1 and the non-canonical Notch ligand Dlk1, both deprived of their transmembrane regions upon ectodomain shedding, or the bona fide secreted molecule EGFL7. We present frequently used methods to decrease Notch signalling, and we discuss how soluble Notch inhibitors may be used to treat diseases. [source] |