Translation Machinery (translation + machinery)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Cell-free synthesis of functional proteins using transcription/translation machinery entrapped in silica sol,gel matrix

BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2009
Kyeong-Ohn Kim
Abstract Herewith we report the encapsulation of functional protein synthesis machinery in a silica sol,gel matrix. When the sol,gel reaction using alkoxysilane monomers was carried out in the presence of Escherichia coli cell extract, macromolecular protein synthesis machinery in the cell extract was successfully immobilized within a silica gel matrix, catalyzing the translation of co-immobilized DNA when supplied with small-molecular-weight substrates for protein synthesis. The efficiency of protein synthesis was affected by the pore size of the gel structure, which was controlled through the use of appropriate additives during the sol,gel reactions. To the best of our knowledge, this is the first report describing the reproduction of the entire set of complicated biological process within an inorganic gel matrix, and we expect that the developed technology will find many applications in numerous fields such as high-throughput gene expression and the development of multifunctional biosensors. Biotechnol. Bioeng. 2009;102: 303,307. © 2008 Wiley Periodicals, Inc. [source]


Progress toward liver-based gene therapy

HEPATOLOGY RESEARCH, Issue 4 2009
Takeshi Suda
The liver is involved in the synthesis of serum proteins, regulation of metabolism and maintenance of homeostasis and provides a variety of opportunities for gene therapy. The enriched vasculature and blood circulation, fenestrated endothelium, abundant receptors on the plasma membranes of the liver cells, and effective transcription and translation machineries in the hepatocytes are some unique features that have been explored for delivery, and functional analysis, of genetic sequences in the liver. Both viral and non-viral methods have been developed for effective gene delivery and liver-based gene therapy. This review describes the fundamentals of gene delivery, and the preclinical and clinical progress that has been made toward gene therapy using the liver as a target. [source]


A role for eukaryotic translation initiation factor 2B (eIF2B) in taste memory consolidation and in thermal control establishment during the critical period for sensory development

DEVELOPMENTAL NEUROBIOLOGY, Issue 6 2007
Sharon Tirosh
Abstract All species exhibit critical periods for sensory development, yet very little is known about the molecules involved in the changes in the network wiring that underlies this process. Here the role of transcription regulation of the translation machinery was determined by evaluating the expression of eIF2B,, an essential component of translation initiation, in both taste-preference development and thermal control establishment in chicks. Analysis of the expression pattern of this gene after passive-avoidance training revealed clear induction of eIF2B, in both the mesopallium intermediomediale (IMM) and in the striatum mediale (StM). In addition, a correlation was found between the concentration of methylanthranilate (MeA), which was the malaise substrate in the passive-avoidance training procedure, the duration of memory, and the expression level of eIF2B,. Training chicks on a low concentration of MeA induced short-term memory and low expression level of eIF2B,, whereas a high concentration of MeA induced long-term memory and a high expression level of eIF2B, in both the IMM and StM. Furthermore, eIF2B, -antisense "knock-down" not only reduced the amount of eIF2B, but also attenuated taste memory formation. In order to determine whether induction of eIF2B, is a general feature of neuronal plasticity, we checked whether it was induced in other forms of neuronal plasticity, with particular attention to its role in temperature control establishment, which represents hypothalamic-related plasticity. It was established that eIF2B, -mRNA was induced in the preopotic anterior hypothalamus during heat conditioning. Taken together, these results correlate eIF2B, with sensory development. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007. [source]


Leishmania infantum LeIF protein is an ATP-dependent RNA helicase and an eIF4A-like factor that inhibits translation in yeast

FEBS JOURNAL, Issue 22 2006
Mourad Barhoumi
LeIF, a Leishmania protein similar to the eukaryotic initiation factor eIF4A, which is a prototype of the DEAD box protein family, was originally described as a Th1-type natural adjuvant and as an antigen that induces an IL12-mediated Th1 response in the peripheral blood mononuclear cells of leishmaniasis patients. This study aims to characterize this protein by comparative biochemical and genetic analysis with eIF4A in order to assess its potential as a target for drug development. We show that a His-tagged, recombinant, LeIF protein of Leishmania infantum, which was purified from Escherichia coli, is both an RNA-dependent ATPase and an ATP-dependent RNA helicase in vitro, as described previously for other members of the DEAD box helicase protein family. In vivo experiments show that the LeIF gene cannot complement the deletion of the essential TIF1 and TIF2 genes in the yeast Saccharomyces cerevisiae that encode eIF4A. In contrast, expression of LeIF inhibits yeast growth when endogenous eIF4A is expressed off only one of its two encoding genes. Furthermore, in vitro binding assays show that LeIF interacts with yeast eIF4G. These results show an unproductive interaction of LeIF with translation initiation factors in yeast. Furthermore, the 25 amino terminal residues were shown to enhance the ability of LeIF to interfere with the translation machinery in yeast. [source]


Nonstructural 3/4A protease of hepatitis C virus activates epithelial growth factor,induced signal transduction by cleavage of the T-cell protein tyrosine phosphatase,

HEPATOLOGY, Issue 6 2009
Erwin Daniel Brenndörfer
The hepatitis C virus (HCV) is a worldwide major cause of chronic liver disease with a high tendency to establish a persistent infection. To permit persistent replication of viral genomes through the cellular translation machinery without affecting host cell viability, viruses must have developed mechanisms to control cellular cascades required for sufficient viral replication, on the one hand, and to adapt viral replication to the cellular requirements on the other hand. The present study aimed to further elucidate mechanisms by which HCV targets growth factor signaling of the host cell and their implications for viral replication. The study describes a novel mechanism by which HCV influences the activation of the epithelial growth factor receptor/Akt pathway through a nonstructural (NS)3/4A-dependent down-regulation of the ubiquitously expressed tyrosine phosphatase T cell protein tyrosine phosphatase (TC-PTP). NS3/4A is demonstrated to cleave TC-PTP protease-dependently in vitro at two cleavage sites. The in vivo relevance of this finding is supported by the fact that down-regulation of TC-PTP protein expression could also be demonstrated in HCV-infected individuals and in transgenic mice with intrahepatic expression of NS3/4A. Conclusion: This down-regulation of TC-PTP results in an enhancement of epithelial growth factor (EGF)-induced signal transduction and increases basal activity of Akt, which is demonstrated to be essential for the maintenance of sufficient viral replication. Hence, therapeutic targeting of NS3/4A may not only disturb viral replication by blocking the processing of the viral polyprotein but also exerts unforeseen indirect antiviral effects, further diminishing viral replication. (HEPATOLOGY 2009;49:1810,1820.) [source]


Noradrenaline enhances the expression of the neuronal monocarboxylate transporter MCT2 by translational activation via stimulation of PI3K/Akt and the mTOR/S6K pathway

JOURNAL OF NEUROCHEMISTRY, Issue 2 2007
Julie Chenal
Abstract Monocarboxylate transporter 2 (MCT2) expression is up-regulated by noradrenaline (NA) in cultured cortical neurons via a putative but undetermined translational mechanism. Western blot analysis showed that p44/p42 mitogen-activated protein kinase (MAPK) was rapidly and strongly phosphorylated by NA treatment. NA also rapidly induced serine/threonine protein kinase from AKT virus (Akt) phosphorylation but to a lesser extent than p44/p42 MAPK. However, Akt activation persisted over a longer period. Similarly, NA induced a rapid and persistent phosphorylation of mammalian target of rapamycin (mTOR), a kinase implicated in the regulation of translation in the central nervous system. Consistent with activation of the mTOR/S6 kinase pathway, phosphorylation of the ribosomal S6 protein, a component of the translation machinery, could be observed upon treatment with NA. In parallel, it was found that the NA-induced increase in MCT2 protein was almost completely blocked by LY294002 (phosphoinositide 3-kinase inhibitor) as well as by rapamycin (mTOR inhibitor), while mitogen-activated protein kinase kinase and p38 MAPK inhibitors had much smaller effects. Taken together, these data reveal that NA induces an increase in neuronal MCT2 protein expression by a mechanism involving stimulation of phosphoinositide 3-kinase/Akt and translational activation via the mTOR/S6 kinase pathway. Moreover, considering the role of NA in synaptic plasticity, alterations in MCT2 expression as described in this study might represent an adaptation to face energy demands associated with enhanced synaptic transmission. [source]


Comparative proteomic and transcriptional profiling of a bread wheat cultivar and its derived transgenic line overexpressing a low molecular weight glutenin subunit gene in the endosperm

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 14 2008
Federico Scossa
Abstract We carried out a parallel transcriptional and proteomic comparison of seeds from a transformed bread wheat line that overexpresses a transgenic low molecular weight glutenin subunit gene relative to the corresponding nontransformed genotype. Proteomic analyses showed that, during seed development, several classes of endosperm proteins were differentially accumulated in the transformed endosperm. As a result of the strong increase in the amount of the transgenic protein, the endogenous glutenin subunit, all subclasses of gliadins, and metabolic as well as chloroform/methanol soluble proteins were diminished in the transgenic genotype. The differential accumulation detected by proteomic analyses, both in mature and developing seeds, was paralleled by the corresponding changes in transcript levels detected by microarray experiments. Our results suggest that the most evident effect of the strong overexpression of the transgenic glutenin gene consists in a global compensatory response involving a significant decrease in the amounts of polypeptides belonging to the prolamin superfamily. It is likely that such compensation is a consequence of the diversion of amino acid reserves and translation machinery to the synthesis of the transgenic glutenin subunit. [source]


The cytotoxic activity of the bacteriophage ,-holin protein reduces tumour growth rates in mammary cancer cell xenograft models

THE JOURNAL OF GENE MEDICINE, Issue 2 2006
Chukwuma A. Agu
Abstract Background The potential use of gene therapy for cancer treatment is being intensively studied. One approach utilises the expression of genes encoding cytotoxic proteins. Such proteins can affect cellular viability, for example by inhibiting the translation machinery or disturbing membrane integrity. The bacteriophage Lambda (,)-holin protein is known to form a lesion in the cytoplasmic membrane of E. coli, triggering bacterial cell lysis and thereby enabling the release of new bacteriophage particles. The aim of this study was to evaluate whether the ,-holin protein has a cytotoxic impact on eukaryotic cells and whether it holds potential as a new therapeutic protein for cancer gene therapy. Methods To explore this possibility, stably transfected human cell lines were established that harbour a tetracycline (Tet)-inducible system for controlled expression of the ,-holin gene. The effect of the ,-holin protein on eukaryotic cells was studied in vitro by applying several viability assays. We also investigated the effect of ,-holin gene expression in vivo using a human breast cancer cell tumour xenograft as well as a syngeneic mammary adenocarcinoma mouse model. Results The ,-holin-encoding gene was inducibly expressed in eukaryotic cells in vitro. Expression led to a substantial reduction of cell viability of more than 98%. In mouse models, ,-holin-expressing tumour cell xenografts revealed significantly reduced growth rates in comparison to xenografts not expressing the ,-holin gene. Conclusions The ,-holin protein is cytotoxic for eukaryotic cells in vitro and inhibits tumour growth in vivo suggesting potential therapeutic use in cancer gene therapy. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Exercise rapidly increases eukaryotic elongation factor 2 phosphorylation in skeletal muscle of men

THE JOURNAL OF PHYSIOLOGY, Issue 1 2005
Adam J. Rose
Protein synthesis in skeletal muscle is known to decrease during contractions but the underlying regulatory mechanisms are unknown. Here, the effect of exercise on skeletal muscle eukaryotic elongation factor 2 (eEF2) phosphorylation, a key component in protein translation machinery, was examined. Eight healthy men exercised on a cycle ergometer at a workload eliciting ,67% peak pulmonary oxygen consumption with skeletal muscle biopsies taken from the vastus lateralis muscle at rest as well as after 1, 10, 30, 60 and 90 min of exercise. In response to exercise, there was a rapid (i.e. < 1 min) 5- to 7-fold increase in eEF2 phosphorylation at Thr56 that was sustained for 90 min of continuous exercise. The in vitro activity of skeletal muscle eEF2 kinase was not altered by exercise indicating that the increased activity of eEF2 kinase to eEF2 is not mediated by covalent mechanisms. In support of this, the increase in AMPK activity was temporally unrelated to eEF2 phosphorylation. However, skeletal muscle eEF2 kinase was potently activated by Ca2+,calmodulin in vitro, suggesting that the higher eEF2 phosphorylation in working skeletal muscle is mediated by allosteric activation of eEF2 kinase by Ca2+ signalling via calmodulin. Given that eEF2 phosphorylation inhibits eEF2 activity and mRNA translation, these findings suggest that the inhibition of protein synthesis in contracting skeletal muscle is due to the Ca2+ -induced stimulation of eEF2 kinase. [source]


The cytoplasmic structure hypothesis for ribosome assembly, vertical inheritance, and phylogeny,

BIOESSAYS, Issue 7 2009
David S. Thaler
Abstract Fundamental questions in evolution concern deep divisions in the living world and vertical versus horizontal information transfer. Two contrasting views are: (i) three superkingdoms Archaea, Eubacteria, and Eukarya based on vertical inheritance of genes encoding ribosomes; versus (ii) a prokaryotic/eukaryotic dichotomy with unconstrained horizontal gene transfer (HGT) among prokaryotes. Vertical inheritance implies continuity of cytoplasmic and structural information whereas HGT transfers only DNA. By hypothesis, HGT of the translation machinery is constrained by interaction between new ribosomal gene products and vertically inherited cytoplasmic structure made largely of preexisting ribosomes. Ribosomes differentially enhance the assembly of new ribosomes made from closely related genes and inhibit the assembly of products from more distal genes. This hypothesis suggests experiments for synthetic biology: the ability of synthetic genomes to "boot," i.e., establish hereditary continuity, will be constrained by the phylogenetic closeness of the cell "body" into which genomes are placed. [source]


Crystallization and preliminary X-ray analysis of eukaryotic initiation factor 4E from Pisum sativum

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 8 2009
Jamie A. Ashby
Crystals of an N-terminally truncated 20,kDa fragment of Pisum sativum eIF4E (,N-eIF4E) were grown by vapour diffusion. X-ray data were recorded to a resolution of 2.2,Å from a single crystal in-house. Indexing was consistent with primitive monoclinic symmetry and solvent-content estimations suggested that between four and nine copies of the eIF4E fragment were possible per crystallographic asymmetric unit. eIF4E is an essential component of the eukaryotic translation machinery and recent studies have shown that point mutations of plant eIF4Es can confer resistance to potyvirus infection. [source]


The effect of heating rate on Escherichia coli metabolism, physiological stress, transcriptional response, and production of temperature-induced recombinant protein: A scale-down study

BIOTECHNOLOGY & BIOENGINEERING, Issue 2 2009
Luis Caspeta
Abstract At the laboratory scale, sudden step increases from 30 to 42°C can be readily accomplished when expressing heterologous proteins in heat-inducible systems. However, for large scale-cultures only slow ramp-type increases in temperature are possible due to heat transfer limitations, where the heating rate decreases as the scale increases. In this work, the transcriptional and metabolic responses of a recombinant Escherichia coli strain to temperature-induced synthesis of pre-proinsulin in high cell density cultures were examined at different heating rates. Heating rates of 6, 1.7, 0.8, and 0.4°C/min were tested in a scale-down approach to mimic fermentors of 0.1, 5, 20, and 100 m3, respectively. The highest yield and concentration of recombinant protein was obtained for the slowest heating rate. As the heating rate increased, the yield and maximum recombinant protein concentration decreased, whereas a larger fraction of carbon skeletons was lost as acetate, lactate, and formate. Compared to 30°C, the mRNA levels of selected heat-shock genes at 38 and 42°C, as quantified by qRT-PCR, increased between 2- to over 42-fold when cultures were induced at 6, 1.7, and 0.8°C/min, but no increase was observed at 0.4°C/min. Only small increases (between 1.5- and 4-fold) in the expression of the stress genes spoT and relA were observed at 42°C for cultures induced at 1.7 and 6°C/min, suggesting that cells subjected to slow temperature increases can adapt to stress. mRNA levels of genes from the transcription,translation machinery (tufB, rpoA, and tig) decreased between 40% and 80% at 6, 1.7 and 0.8°C/min, whereas a transient increase occurred for 0.4°C/min at 42°C. mRNA levels of the gene coding for pre-proinsulin showed a similar profile to transcripts of heat-shock genes, reflecting a probable analogous induction mechanism. Altogether, the results obtained indicate that slow heating rates, such as those likely to occur in conventional large-scale fermentors, favored heterologous protein synthesis by the thermo-inducible expression system used in this report. Knowledge of the effect of heating rate on bacterial physiology and product formation is useful for the rational design of scale-down and scale-up strategies and optimum recombinant protein induction schemes. Biotechnol. Bioeng. 2009;102: 468,482. © 2008 Wiley Periodicals, Inc. [source]


Folding at the rhythm of the rare codon beat

BIOTECHNOLOGY JOURNAL, Issue 8 2008
Monica Marin Dr.
Abstract The persistent difficulties in the production of protein at high levels in heterologous systems, as well as the inability to understand pathologies associated with protein aggregation, highlight our limited knowledge on the mechanisms of protein folding in vivo. Attempts to improve yield and quality of recombinant proteins are diverse, frequently involving optimization of the cell growth temperature, the use of synonymous codons and/or the co-expression of tRNAs, chaperones and folding catalysts among others. Although protein secondary structure can be determined largely by the amino acid sequence, protein folding within the cell is affected by a range of factors beyond amino acid sequence. The folding pathway of a nascent polypeptide can be affected by transient interactions with other proteins and ligands, the ribosome, translocation through a pore membrane, redox conditions, among others. The translation rate as well as the translation machinery itself can dramatically affect protein folding, and thus the structure and function of the protein product. This review addresses current efforts to better understand how the use of synonymous codons in the mRNA and the availability of tRNAs can modulate translation kinetics, affecting the folding, the structure and the biological activity of proteins. [source]