Translation Elongation Factor (translation + elongation_factor)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Trichoderma biodiversity in China: Evidence for a North to South distribution of species in East Asia

FEMS MICROBIOLOGY LETTERS, Issue 2 2005
Chu-long Zhang
Abstract Towards assessing the biodiversity and biogeography of Trichoderma, we have analyzed the occurrence of Trichoderma species in soil and litter from four areas in China: North (Hebei province), South-East (Zhejiang province), West (Himalayan, Tibet) and South-West (Yunnan province). One hundred and thirty five isolates were grouped according to tentative morphological identification. A representative 64 isolates were verified at the species level by the oligonucleotide barcode program TrichO Key v.1.0 and the custom BLAST server Tricho BLAST, using sequences of the ITS1 and 2 region of the rRNA cluster and from the longest intron of the tef1 (translation elongation factor 1-,) gene. Eleven known species (Trichoderma asperellum, T. koningii, T. atroviride, T. viride, T. velutinum, T. cerinum, T. virens, T. harzianum, T. sinensis, T. citrinoviride, T. longibrachiatum) and two putative new species (T. sp. C1, and T. sp. C2), distinguished from known species both by morphological characters and phylogenetic analysis, were identified. A significant difference in the occurrence of these species was found between the North (Hebei) and South-West (Yunnan) areas, which correlates with previously reported species distributions in Siberia and South-East Asia, respectively. As in previous studies, T. harzianum accounted for almost half of the biodiversity; although, in this study, it was exclusively found in the North, and was predominantly represented by an ITS1 and 2 haplotype, which has so far been rarely found elsewhere. This study therefore reveals a North,South gradient in species distribution in East Asia, and identifies Northern China as a potential center of origin of a unique haplotype of T. harzianum. [source]


Loss of translation elongation factor (eEF1A2) expression in vivo differentiates between Wallerian degeneration and dying-back neuronal pathology

JOURNAL OF ANATOMY, Issue 6 2008
Lyndsay M. Murray
Abstract Wallerian degeneration and dying-back pathology are two well-known cellular pathways capable of regulating the breakdown and loss of axonal and synaptic compartments of neurons in vivo. However, the underlying mechanisms and molecular triggers of these pathways remain elusive. Here, we show that loss of translation elongation factor eEF1A2 expression in lower motor neurons and skeletal muscle fibres in homozygous Wasted mice triggered a dying-back neuropathy. Synaptic loss at the neuromuscular junction occurred in advance of axonal pathology and by a mechanism morphologically distinct from Wallerian degeneration. Dying-back pathology in Wasted mice was accompanied by reduced expression levels of the zinc finger protein ZPR1, as found in other dying-back neuropathies such as spinal muscular atrophy. Surprisingly, experimental nerve lesion revealed that Wallerian degeneration was significantly delayed in homozygous Wasted mice; morphological assessment revealed that ~80% of neuromuscular junctions in deep lumbrical muscles at 24 h and ~50% at 48 h had retained motor nerve terminals following tibial nerve lesion. This was in contrast to wild-type and heterozygous Wasted mice where < 5% of neuromuscular junctions had retained motor nerve terminals at 24 h post-lesion. These data show that eEF1A2 expression is required to prevent the initiation of dying-back pathology at the neuromuscular junction in vivo. In contrast, loss of eEF1A2 expression significantly inhibited the initiation and progression of Wallerian degeneration in vivo. We conclude that loss of eEF1A2 expression distinguishes mechanisms underlying dying-back pathology from those responsible for Wallerian degeneration in vivo and suggest that eEF1A2 -dependent cascades may provide novel molecular targets to manipulate neurodegenerative pathways in lower motor neurons. [source]


Surviving climate changes: high genetic diversity and transoceanic gene flow in two arctic,alpine lichens, Flavocetraria cucullata and F. nivalis (Parmeliaceae, Ascomycota)

JOURNAL OF BIOGEOGRAPHY, Issue 8 2010
József Geml
Abstract Aim, We examined genetic structure and long-distance gene flow in two lichenized ascomycetes, Flavocetraria cucullata and Flavocetraria nivalis, which are widespread in arctic and alpine tundra. Location, Circumpolar North. Methods, DNA sequences were obtained for 90 specimens (49 for F. cucullata and 41 for F. nivalis) collected from various locations in Europe, Asia and North America. Sequences of the nuclear internal transcribed spacer (ITS) + 5.8S ribosomal subunit gene region were generated for 89 samples, and supplemented by beta-tubulin (BTUB) and translation elongation factor 1-alpha gene (EF1) sequences for a subset of F. cucullata specimens. Phylogenetic, nonparametric permutation methods and coalescent analyses were used to assess population divergence and to estimate the extent and direction of migration among continents. Results, Both F. cucullata and F. nivalis were monophyletic, supporting their morphology-based delimitation, and had high and moderately high intraspecific genetic diversity, respectively. Clades within each species contained specimens from both North America and Eurasia. We found only weak genetic differentiation among North American and Eurasian populations, and evidence for moderate to high transoceanic gene flow. Main conclusions, Our results suggest that both F. cucullata and F. nivalis have been able to migrate over large distances in response to climatic fluctuations. The high genetic diversity observed in the Arctic indicates long-term survival at high latitudes, whereas the estimated migration rates and weak geographic population structure suggest a continuing long-distance gene flow between continents that has prevented pronounced genetic differentiation. The mode of long-distance dispersal is unknown, but wind dispersal of conidia and/or ascospores is probably important in the open arctic landscapes. The high genetic diversity and efficient long-distance dispersal capability of F. cucullata and F. nivalis suggest that these species, and perhaps other arctic lichens as well, will be able to track their potential niche in the changing Arctic. [source]


Hybridization among cryptic species of the cellar fungus Coniophora puteana (Basidiomycota)

MOLECULAR ECOLOGY, Issue 2 2007
HĹVARD KAUSERUD
Abstract In this study we have analysed the genetic variation and phylogeography in a global sample of the cellar fungus Coniophora puteana, which is an important destroyer of wooden materials indoor. Multilocus genealogies of three DNA regions (beta tubulin, nrDNA ITS and translation elongation factor 1,) revealed the occurrence of three cryptic species (PS1,3) in the morphotaxon C. puteana. One of the lineages (PS3) is apparently restricted to North America while the other two (PS1,2) have wider distributions on multiple continents. Interspecific hybridization has happened between two of the lineages (PS1 and PS3) in North America. In three dikaryotic isolates, two highly divergent beta tubulin alleles coexisted, one derived from PS1 and one from PS3. Furthermore, one isolate included a recombinant ITS sequence, where ITS1 resembled the ITS1 version of PS3 while ITS2 was identical to a frequent PS1 ITS2 version. This pattern must be due to hybridization succeeded by intralocus recombination in ITS. The results further indicated that introgression has happened between subgroups appearing in PS1. We hypothesize that the observed reticulate evolution is due to previous allopatric separation followed by more recent reoccurrence in sympatry, where barriers to gene flow have not yet evolved. A complex phylogeographical structure is observed in the morphotaxon C. puteana caused by (i) cryptic speciation; (ii) the interplay between natural migration and distribution patterns and probably more recent human mediated dispersal events; and (iii) hybridization and introgression. [source]


Exploring the species diversity of Trichoderma in Norwegian drinking water systems by DNA barcoding

MOLECULAR ECOLOGY RESOURCES, Issue 6 2008
GUNHILD HAGESKAL
Abstract A total of 123 Trichoderma strains were isolated from Norwegian surface-sourced drinking water. The water samples included raw water, treated water, and water from private homes and hospital installations. Trichoderma species are difficult to differentiate morphologically, but recent molecular identification tools, including DNA barcoding, successfully distinguish between closely related species. The diversity of Trichoderma spp. was explored by DNA sequencing of internal transcribed spacer (ITS) and translation elongation factor 1 alpha (TEF-1,). Sequence identification was performed in the TrichOKEY version 2.0 barcode program and in the multilocus similarity search database TrichoBLAST, combined with traditional blast searches in the EMBL/GenBank. A total of 11 known Trichoderma/Hypocrea species were identified. In addition, one group of unidentified Trichoderma strains was found to represent a separate, strongly supported subclade within the Pachybasium,A'/Hamatum clade, based on their TEF-1, haplotypes. Trichoderma viride comprised 49% of the identified strains, and was represented by four and eight slightly different ITS and TEF-1, haplotypes, respectively. Approximately 22% of the surface-derived water samples were positive for T. viride, and the species was frequently isolated throughout the surface-sourced drinking water distribution system. The results indicate that a broad range of Trichoderma species are present in Norwegian surface-sourced drinking. Water treatment has minor effect in removing Trichoderma from raw water, and active growth in the water distribution system is likely to occur. [source]


Revealing frequent alternative polyadenylation and widespread low-level transcription read-through of novel plant transcription terminators

PLANT BIOTECHNOLOGY JOURNAL, Issue 7 2010
Aiqiu Xing
Summary Plant genetic engineering can create transgenic crops with improved characteristics by introducing trait genes through transformation. Appropriate regulatory elements such as promoters and terminators have to be present in certain configurations for the transgenes to be properly expressed. Five terminators native to soybean genes-encoding a MYB family transcription factor (MYB2), a Kunitz trypsin inhibitor (KTI1), a plasma membrane intrinsic protein (PIP1), a translation elongation factor (EF1A2) and a metallothionein protein (MTH1) were cloned and tested for their ability to enable transgene expression, mRNA polyadenylation and transcription termination. The terminators are as good as a control terminator of the potato proteinase inhibitor II gene (PINII) in conferring proper transgene expression, leading to mRNAs with various polyadenylation sites and terminating mRNA transcripts. RNA transcription read-through was detected in all transgenic plants and was quantified by qRT-PCR to be <1% at positions ,1 kb downstream of the 5, ends of different terminators. The detection of read-through RNA transcripts of the corresponding endogenous genes up to approximately 1 kb beyond the polyadenylation sites suggests that limited RNA transcription read-through is a normal phenomenon of gene expression. The study also provided more choices of terminators for plant genetic engineering when constructing DNA constructs containing multiple gene expression cassettes. [source]


Prenatal alcohol exposure alters phosphorylation and glycosylation of proteins in rat offspring liver

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 3 2010
Bourlaye Fofana
Abstract To gain more insights into the translational and PTM that occur in rat offspring exposed to alcohol in utero, 2-D PAGE with total, phospho- and glycoprotein staining and MALDI-MS/MS and database searching were conducted. The results, based on fold-change expression, revealed a down-regulation of total protein expression by prenatal alcohol exposure in 7-day-old and 3-month-old rats. There was an up-regulation of protein phosphorylation but a down-regulation of glycosylation by prenatal alcohol exposure in both age groups. Of 31 protein spots examined per group, differentially expressed proteins were identified as ferritin light chain, aldo-keto reductase, tumor rejection antigen gp96, fructose-1,6-bisphosphatase, glycerol-3-phosphate dehydrogenase, malate dehydrogenase, and ,-actin. Increased phosphorylation was observed in proteins such as calmodulin, gluthatione S-transferase, glucose regulated protein 58, ,-enolase, eukaryotic translation elongation factor 1 ,-2, riboprotein large P2, agmatinase, ornithine carbamoyltransferase, quinolinate phosphoribosyltransferase, formimidoyltransferase cyclodeaminase, and actin. In addition, glycosylation of adenosine kinase, adenosylhomocysteine hydrolase, and 3-hydroxyanthranilate dioxygenase was reduced. Pathways affected by these protein alterations include cell signaling, cellular stress, protein synthesis, cytoskeleton, as well as glucose, aminoacid, adenosine and energy metabolism. The activity of the gluconeogenic enzyme fructose-1,6-bisphosphatase was elevated by prenatal alcohol. The observations may have important physiological implications. [source]


Expression of Ht2 -related genes in response to the HT-Toxin of Exserohilum turcicum in Maize

ANNALS OF APPLIED BIOLOGY, Issue 1 2010
H. Wang
Complementary DNA amplified fragment length polymorphism (cDNA-AFLP) analysis was conducted to analyze differential expression of Ht2 -related genes between maize (Zea mays) near-isogenic lines (NILs), Huangzaosi (HZS) and HuangzaosiHt2 (HZSHt2), following treatment with a crude extract of the HT-toxin. Twenty-one transcript-derived fragments (TDFs), designated H1 to H21, were specifically expressed or upregulated in HZSHt2 following exposure to the HT-toxin. Among them, 4, 7, 4, 2, 2 and 2 TDFs were detected at 3, 6, 12, 24, 48 and 72 h after treatment, respectively. BLAST analysis showed that H1, H11, H13 and H15 are related to regulation of the defence response to environmental stresses. H3, H6 and H10 are associated with energy metabolism. H5, H17 and H18 are involved in photosynthesis. H9 is similar to ubiquitin-like domain containing CTD phosphatase. H8, H9, H16 and H20 are probably transcription factors. The genes associated with basal energy metabolism and signal of stress tolerance were mainly expressed at 3 h after treatment. Transcription factor and most genes for stress tolerance were expressed at 6 h after treatment. RT-PCR analysis demonstrated that H8 was upregulated in HZSHt2 only at 6 h after exposure to the HT-toxin and H13 was upregulated at 6 and 12 h. The full length cDNAs of H8 (GenBank accession number FJ600319) and H13 (FJ600320) were cloned. The deduced protein encoded by H8 cDNA showed 77% homology to the Plus-3 domain containing protein, which is found in yeast gene Rtf1. H13 cDNA encodes a QM-like protein, which is an important protein in plant tolerance to environmental stress. The mechanism regulating the resistance of Ht2 to the HT-toxin might involve a translation elongation factor or an upregulated QM-like protein. [source]


Identification, distribution and current taxonomy of Botryosphaeriaceae species associated with grapevine decline in New South Wales and South Australia

AUSTRALIAN JOURNAL OF GRAPE AND WINE RESEARCH, Issue 1 2010
W.M. PITT
Abstract Background and Aims:, Botryosphaeriaceae species are recognised as important pathogens of grapevines both in Australia and overseas. The identity, prevalence and distribution of Botryosphaeriaceae species in vineyards throughout the major winegrowing regions of New South Wales (NSW) and South Australia (SA) was determined to provide a foundation for improved disease prevention and management. Methods and Results:, Field surveys from 91 vineyards across NSW and SA resulted in the collection of 2239 diseased wood samples and subsequent isolation of 1258 Botryosphaeriaceae isolates. Morphological identification along with phylogenetic analysis of ribosomal DNA internal transcribed spacer regions (ITS1-5.8S-ITS2) and partial sequences of the translation elongation factor 1-, gene (EF1-,) showed that eight Botryosphaeriaceae species from four phylogenetic lineages occur on grapevines in eastern Australia, including Diplodia seriata, Diplodia mutila, Lasiodiplodia theobromae, Neofusicoccum parvum, Neofusicoccum australe, Botryosphaeria dothidea, Dothiorella viticola and Dothiorella iberica. Conclusions:, The prevalence of individual species varied according to geography and climate. Species of Diplodia and Dothiorella, characterised by thick-walled, pigmented conidia were the most prevalent and were distributed widely throughout both NSW and SA. Species with hyaline conidia, such as Neofusicoccum and Fusicoccum, were isolated less frequently and displayed more limited geographic ranges, whilst only a single isolate of Lasiodiplodia was recovered, this being from the northern most region of NSW. Significance of the Study:, The identification of eight taxa within the Botryosphaeriaceae, and their distributions throughout south-eastern Australia was established and discussed in context with climate, reported optimum growth temperatures, and more recent taxonomic and nomenclatural revisions. We established a sound base for control strategies based on the prevailing species in Australian viticultural regions. [source]