Translation Control (translation + control)

Distribution by Scientific Domains


Selected Abstracts


Novel CNBP- and La-based translation control systems for mammalian cells

BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2003
Stefan Schlatter
Abstract Throughout the development of Xenopus, production of ribosomal proteins (rp) is regulated at the translational level. Translation control is mediated by a terminal oligopyrimidine element (TOP) present in the 5, untranslated region (UTR) of rp -encoding mRNAs. TOP elements adopt a specific secondary structure that prevents ribosome-binding and translation-initiation of rp -encoding mRNAs. However, binding of CNBP (cellular nucleic acid binding protein) or La proteins to the TOP hairpin structure abolishes the TOP-mediated transcription block and induces rp production. Based on the specific CNBP-TOP/La-TOP interactions we have designed a translation control system (TCS) for conditional as well as adjustable translation of desired transgene mRNAs in mammalian cells. The generic TCS configuration consists of a plasmid encoding CNBP or La under control of the tetracycline-responsive expression system (TETOFF) and a target expression vector containing a TOP module between a constitutive PSV40 promoter and the human model product gene SEAP (human secreted alkaline phosphatase) (PSV40 -TOP- SEAP -pA). The TCS technology showed excellent SEAP regulation profiles in transgenic Chinese hamster ovary (CHO) cells. Alternatively to CNBP and La, TOP-mediated translation control can also be adjusted by artificial phosphorothioate anti-TOP oligodeoxynucleotides. Confocal laser-scanning microscopy demonstrated cellular uptake of FITC-labeled oligodeoxynucleotides and their localization in perinuclear organelles within 24 hours. Besides their TOP-based translation-controlling capacity, CNBP and La were also shown to increase cap-independent translation from polioviral internal ribosomal entry sites (IRES) and La alone to boost cap-dependent translation initiation. CNBP and La exemplify for the first time the potential of RNA-binding proteins to exert translation control of desired transgenes and to increase heterologous protein production in mammalian cells. We expect both of these assets to advance current gene therapy and biopharmaceutical manufacturing strategies. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 1,12, 2003. [source]


Translating nociceptor sensitivity: the role of axonal protein synthesis in nociceptor physiology

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2009
Theodore J. Price
Abstract The increased sensitivity of peripheral pain-sensing neurons, or nociceptors, is a major cause of the sensation of pain that follows injury. This plasticity is thought to contribute to the maintenance of chronic pain states. Although we have a broad knowledge of the factors that stimulate changes in nociceptor sensitivity, the cellular mechanisms that underlie this plasticity are still poorly understood; however, they are likely to involve changes in gene expression required for the phenotypic and functional changes seen in nociceptive neurons after injury. While the regulation of gene expression at the transcriptional level has been studied extensively, the regulation of protein synthesis, which is also a tightly controlled process, has only recently received more attention. Despite the established role of protein synthesis in the plasticity of neuronal cell bodies and dendrites, little attention has been paid to the role of translation control in mature undamaged axons. In this regard, several recent studies have demonstrated that the control of protein synthesis within the axonal compartment is crucial for the normal function and regulation of sensitivity of nociceptors. Pathways and proteins regulating this process, such as the mammalian target of rapamycin signaling cascade and the fragile X mental retardation protein, have recently been identified. We review here recent evidence for the regulation of protein synthesis within a nociceptor's axonal compartment and its contribution to this neuron's plasticity. We believe that an increased understanding of this process will lead to the identification of novel targets for the treatment of chronic pain. [source]


Phosphorylation of the arginine/serine dipeptide-rich motif of the severe acute respiratory syndrome coronavirus nucleocapsid protein modulates its multimerization, translation inhibitory activity and cellular localization

FEBS JOURNAL, Issue 16 2008
Tsui-Yi Peng
Coronavirus nucleocapsid protein is abundant in infected cells and participates in viral RNA replication and transcription. The central domain of the nucleocapsid protein contains several arginine/serine (RS) dipeptides, the biological significance of which has not been well investigated. In the present study, we demonstrate that the severe acute respiratory syndrome coronavirus nucleocapsid protein is phosphorylated primarily within the RS-rich region in cells and by SR protein kinase 1 in vitro. The nucleocapsid protein could suppress translation and its RS motif is essential for such an activity. Moreover, phosphorylation of the RS motif could modulate the translation inhibitory activity of the nucleocapsid protein. We further found that RS motif phosphorylation did not significantly affect RNA binding of the nucleocapsid protein but impaired its multimerization ability. We observed that the nucleocapsid protein could translocate to cytoplasmic stress granules in response to cellular stress. Deletion or mutations of the RS motif enhanced stress granule localization of the nucleocapsid protein, whereas overexpression of SR protein kinase 1 inhibited nucleocapsid protein localization to stress granules. The nucleocapsid protein lacking the RS motif formed high-order RNP complexes, which may also account for its enhanced stress granule localization. Taken together, phosphorylation of the severe acute respiratory syndrome-CoV nucleocapsid protein modulates its activity in translation control and also interferes with its oligomerization and aggregation in stress granules. [source]


Hot topics in aging research: protein translation, 2009

AGING CELL, Issue 6 2009
Brian K. Kennedy
Summary In the last few years, links between regulation of mRNA translation and aging have been firmly established in invertebrate model organisms. This year, a possible relationship between mRNA translation and aging in mammals has been established with the report that rapamycin increases lifespan in mice. Other significant findings have connected translation control with other known longevity pathways and provided fodder for mechanistic hypotheses. Here, we summarize advances in this emerging field and raise questions for future studies. [source]


Engineered Streptomyces quorum-sensing components enable inducible siRNA-mediated translation control in mammalian cells and adjustable transcription control in mice

THE JOURNAL OF GENE MEDICINE, Issue 4 2005
Wilfried Weber
Abstract Background Recent advances in functional genomics, gene therapy, tissue engineering, drug discovery and biopharmaceuticals production have been fostered by precise small-molecule-mediated fine-tuning of desired transgenes. Methods Capitalizing on well-evolved quorum-sensing regulatory networks in Streptomyces coelicolor we have designed a mammalian regulation system inducible by the non-toxic butyrolactone SCB1. Fusion of the S. coelicolor SCB1 quorum-sensing receptor ScbR to the human Kox-1-derived transsilencing domain reconstituted a mammalian transsilencer (SCS) able to repress transcription from SCS-specific operator-containing promoters in a reverse SCB1-adjustable manner. Results This quorum-sensing-derived mammalian transgene control system (Q-ON) enabled precise SCB1-specific fine-tuning of (i) desired transgene transcription in a variety of mammalian/human cell lines and human primary cells, (ii) small interfering RNA-mediated posttranscriptional knockdown (siRNA) in mammalian cells, and (iii) dosing of a human glycoprotein in mice. Conclusions As exemplified by Q-ON technology, bacterial quorum-sensing regulons may represent a near-infinite source for the design of mammalian gene control systems compatible with molecular interventions relevant to future gene therapy and tissue engineering scenarios. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Novel CNBP- and La-based translation control systems for mammalian cells

BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2003
Stefan Schlatter
Abstract Throughout the development of Xenopus, production of ribosomal proteins (rp) is regulated at the translational level. Translation control is mediated by a terminal oligopyrimidine element (TOP) present in the 5, untranslated region (UTR) of rp -encoding mRNAs. TOP elements adopt a specific secondary structure that prevents ribosome-binding and translation-initiation of rp -encoding mRNAs. However, binding of CNBP (cellular nucleic acid binding protein) or La proteins to the TOP hairpin structure abolishes the TOP-mediated transcription block and induces rp production. Based on the specific CNBP-TOP/La-TOP interactions we have designed a translation control system (TCS) for conditional as well as adjustable translation of desired transgene mRNAs in mammalian cells. The generic TCS configuration consists of a plasmid encoding CNBP or La under control of the tetracycline-responsive expression system (TETOFF) and a target expression vector containing a TOP module between a constitutive PSV40 promoter and the human model product gene SEAP (human secreted alkaline phosphatase) (PSV40 -TOP- SEAP -pA). The TCS technology showed excellent SEAP regulation profiles in transgenic Chinese hamster ovary (CHO) cells. Alternatively to CNBP and La, TOP-mediated translation control can also be adjusted by artificial phosphorothioate anti-TOP oligodeoxynucleotides. Confocal laser-scanning microscopy demonstrated cellular uptake of FITC-labeled oligodeoxynucleotides and their localization in perinuclear organelles within 24 hours. Besides their TOP-based translation-controlling capacity, CNBP and La were also shown to increase cap-independent translation from polioviral internal ribosomal entry sites (IRES) and La alone to boost cap-dependent translation initiation. CNBP and La exemplify for the first time the potential of RNA-binding proteins to exert translation control of desired transgenes and to increase heterologous protein production in mammalian cells. We expect both of these assets to advance current gene therapy and biopharmaceutical manufacturing strategies. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 1,12, 2003. [source]