Transient Performance (transient + performance)

Distribution by Scientific Domains


Selected Abstracts


Mixed p-z approach for analytical analysis of an induction motor fed from space-vector PWM voltage source inverter

EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, Issue 6 2002
J. Klima
This paper proposes an analytical method for calculating both the steady-state and transient performance of an induction motor fed from the three-phase voltage source inverter. As a modulation technique of the inverter we consider space vector modulation. The proposed method makes use of the Laplace and modified Z-transformation of the space vectors (mixed p-z approach) to predict current response of induction motor. From the Laplace transform of the stator voltage vector we can also derive Fourier analysis to predict the voltage harmonic spectrum. Experimental tests have been carried out confirming the validity of the analytical results. [source]


A smooth switching adaptive controller for linearizable systems with improved transient performance

INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 9 2006
Jeng Tze Huang
Abstract The certainty equivalent control has achieved asymptotic tracking stability of linearizable systems in the presence of parametric uncertainty. However, two major drawbacks remain to be tackled, namely, the risk of running into singularity for the calculated control input and the poor transient behaviour arising frequently in a general adaptive system. For the first problem, a high gain control is activated in place of the certainty equivalent control until the risk is bypassed. Among others, it requires less control effort by taking advantages of the bounds for the input vector field. Moreover, the switching mechanism is smooth and hence avoids possible chattering behaviour. Next, to solve the second problem, a new type of update algorithm guaranteeing the exponential stability of the overall closed-loop system, on a weaker persistent excitation (PE) condition, is proposed. In particular, it requires no filtering of the regressor and hence is easier to implement. Simulation results demonstrating the validity of the proposed design are given in the final. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Robust output regulation of minimum phase nonlinear systems using conditional servocompensators

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 2 2005
Sridhar Seshagiri
Abstract We consider the design of a robust continuous sliding mode controller for the output regulation of a class of minimum-phase nonlinear systems. Previous work has shown how to do this by incorporating a linear servocompensator in the sliding mode design, but the transient performance is degraded when compared to ideal sliding mode control. Extending previous ideas from the design of ,conditional integrators' for the case of asymptotically constant references and disturbances, we design the servocompensator as a conditional one that provides servocompensation only inside the boundary layer; achieving asymptotic output regulation, but with improved transient performance. We give both regional as well as semi-global results for error convergence, and show that the controller can be tuned to recover the performance of an ideal sliding mode control. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Adaptive backstepping control for a class of nonlinear systems using neural network approximations

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 7 2004
K. K. Tan
In this paper, an adaptive neural network (NN) backstepping technique is developed for tracking control of a class of nonlinear systems. NNs are used to compensate for the unknown nonlinear functions in the system. A systematic backstepping approach is established to synthesize the adaptive NN control scheme that ensures the boundedness of all the signals in the closed-loop system, and yields a small tracking error. The issue of transient performance is also addressed under an analytical framework. The effectiveness of the proposed scheme is demonstrated by computer simulations. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Observer-based adaptive robust control of a class of nonlinear systems with dynamic uncertainties,

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 4 2001
Bin Yao
Abstract In this paper, a discontinuous projection-based adaptive robust control (ARC) scheme is constructed for a class of nonlinear systems in an extended semi-strict feedback form by incorporating a nonlinear observer and a dynamic normalization signal. The form allows for parametric uncertainties, uncertain nonlinearities, and dynamic uncertainties. The unmeasured states associated with the dynamic uncertainties are assumed to enter the system equations in an affine fashion. A novel nonlinear observer is first constructed to estimate the unmeasured states for a less conservative design. Estimation errors of dynamic uncertainties, as well as other model uncertainties, are dealt with effectively via certain robust feedback control terms for a guaranteed robust performance. In contrast with existing conservative robust adaptive control schemes, the proposed ARC method makes full use of the available structural information on the unmeasured state dynamics and the prior knowledge on the bounds of parameter variations for high performance. The resulting ARC controller achieves a prescribed output tracking transient performance and final tracking accuracy in the sense that the upper bound on the absolute value of the output tracking error over entire time-history is given and related to certain controller design parameters in a known form. Furthermore, in the absence of uncertain nonlinearities, asymptotic output tracking is also achieved. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Simulation and validation of ethanol removal from water in an adsorption packed bed: Isotherm and mass transfer parameter determination in batch studies

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2010
R. A. Jones
Abstract Preferential adsorption of ethanol from ethanol/water mixtures in batch equilibrium and kinetic experiments were carried out on a commercially available activated carbon adsorbent Filtrasorb 600 (F-600). A model based on finite difference method was developed and employed to determine the mass transfer parameters and equilibrium behaviour for the adsorption of ethanol from simple batch systems. The estimates of the adsorption isotherm along with the mass transfer parameters were used to simulate the transient performance that could be expected in a packed bed under various operating conditions (feed flow rate, feed concentration, and particle size). The applicability of the simulation results were found to be a good match with experimental packed bed experiments over the entire range of operating conditions tested. La cinétique et l'isotherme d'adsorption de l'éthanol des mélanges eau/éthanol lors d'expériences en discontinus ont été déterminées pour un adsorbant au charbon activé disponible dans le commerce, le Filtrasorb 600 (F-600). Un modèle basé sur la méthode des différences finies a été développé et utilisé pour déterminer les paramètres de transfert de matière et étudier le comportement à l'équilibre pour l'adsorption préférentielle de l'éthanol en systèmes discontinus. Les estimations de l'isotherme d'adsorption aussi bien que les paramètres de transfert de matière ont été utilisées pour simuler la performance en régime transitoire d'un lit d'adsorbant sous diverses conditions de fonctionnement (taux d'écoulement du mélange, concentration du mélange et la taille des particules). L'applicabilité des résultats de simulation s'est avérée tout à fait concordante avec les données expérimentales sous toutes les conditions de fonctionnement examinées. [source]


Structural design of composite nonlinear feedback control for linear systems with actuator constraint,

ASIAN JOURNAL OF CONTROL, Issue 5 2010
Weiyao Lan
Abstract The performance of the composite nonlinear feedback (CNF) control law relies on the selection of the linear feedback gain and the nonlinear function. However, it is a tough task to select an appropriate linear feedback gain and appropriate parameters of the nonlinear function because the general design procedure of CNF control just gives some simple guidelines for the selections. This paper proposes an operational design procedure based on the structural decomposition of the linear systems with input saturation. The linear feedback gain is constructed by two linear gains which are designed independently to stabilize the unstable zero dynamics part and the pure integration part of the system respectively. By investigating the influence of these two linear gains on transient performance, it is flexible and efficient to design a satisfactory linear feedback gain for the CNF control law. Moreover, the parameters of the nonlinear function are tuned automatically by solving a minimization problem. The proposed design procedure is illustrated by applying it to design a tracking control law for the inverted pendulum on a cart system. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society [source]


Robust Tracking Control For A Wheeled Mobile Manipulator With Dual Arms Using Hybrid Sliding-Mode Neural Network

ASIAN JOURNAL OF CONTROL, Issue 4 2007
Ching-Chih Tsai
ABSTRACT In this paper, a robust tracking controller is proposed for the trajectory tracking problem of a dual-arm wheeled mobile manipulator subject to some modeling uncertainties and external disturbances. Based on backstepping techniques, the design procedure is divided into two levels. In the kinematic level, the auxiliary velocity commands for each subsystem are first presented. A sliding-mode equivalent controller, composed of neural network control, robust scheme and proportional control, is constructed in the dynamic level to deal with the dynamic effect. To deal with inadequate modeling and parameter uncertainties, the neural network controller is used to mimic the sliding-mode equivalent control law; the robust controller is designed to compensate for the approximation error and to incorporate the system dynamics into the sliding manifold. The proportional controller is added to improve the system's transient performance, which may be degraded by the neural network's random initialization. All the parameter adjustment rules for the proposed controller are derived from the Lyapunov stability theory and e-modification such that uniform ultimate boundedness (UUB) can be assured. A comparative simulation study with different controllers is included to illustrate the effectiveness of the proposed method. [source]


Neural Network Adaptive Robust Control Of Siso Nonlinear Systems In A Normal Form

ASIAN JOURNAL OF CONTROL, Issue 2 2001
J.Q. Gong
ABSTRACT In this paper, performance oriented control laws are synthesized for a class of single-input-single-output (SISO) n -th order nonlinear systems in a normal form by integrating the neural networks (NNs) techniques and the adaptive robust control (ARC) design philosophy. All unknown but repeat-able nonlinear functions in the system are approximated by the outputs of NNs to achieve a better model compensation for an improved performance. While all NN weights are tuned on-line, discontinuous projections with fictitious bounds are used in the tuning law to achieve a controlled learning. Robust control terms are then constructed to attenuate model uncertainties for a guaranteed output tracking transient performance and a guaranteed final tracking accuracy. Furthermore, if the unknown nonlinear functions are in the functional ranges of the NNs and the ideal NN weights fall within the fictitious bounds, asymptotic output tracking is achieved to retain the perfect learning capability of NNs. The precision motion control of a linear motor drive system is used as a case study to illustrate the proposed NNARC strategy. [source]