Transient Gene Expression (transient + gene_expression)

Distribution by Scientific Domains


Selected Abstracts


A human-specific TNF-responsive promoter for Goodpasture antigen-binding protein

FEBS JOURNAL, Issue 20 2005
Froilán Granero
The Goodpasture antigen-binding protein, GPBP, is a serine/threonine kinase whose relative expression increases in autoimmune processes. Tumor necrosis factor (TNF) is a pro-inflammatory cytokine implicated in autoimmune pathogenesis. Here we show that COL4A3BP, the gene encoding GPBP, maps head-to-head with POLK, the gene encoding for DNA polymerase kappa (pol ,), and shares with it a 140-bp promoter containing a Sp1 site, a TATA-like element, and a nuclear factor kappa B (NF,B)-like site. These three elements cooperate in the assembly of a bidirectional transcription complex containing abundant Sp1 and little NF,B that is more efficient in the POLK direction. Tumour necrosis factor cell induction is associated with Sp1 release, NF,B recruitment and assembly of a complex comparatively more efficient in the COL4A3BP direction. This is accomplished by competitive binding of Sp1 and NF,B to a DNA element encompassing a NF,B-like site that is pivotal for the 140-bp promoter to function. Consistently, a murine homologous DNA region, which contains the Sp1 site and the TATA-like element but is devoid of the NF,B-like site, does not show transcriptional activity in transient gene expression assays. Our findings identify a human-specific TNF-responsive transcriptional unit that locates GPBP in the signalling cascade of TNF and substantiates previous observations, which independently related TNF and GPBP with human autoimmunity. [source]


Modulation of angiogenesis is effective in a model of rheumatoid arthritis

JOURNAL OF ANATOMY, Issue 5 2002
A. O. Afuwape
A feature of rheumatoid arthritis (RA) is prominent hyperplasia of the synovium, which results in an increased distance between the invasive pannus and the existing synovial vasculature. Concomitantly the hyperplastic tissue imposes an augmented metabolic demand on the pre-existing vasculature. As a consequence the synovium in RA becomes hypoxic, resulting in an increased rate of formation of new blood vessels, to supply nutrients and oxygen. Targeting the vasculature in RA is a potential therapeutic approach in RA. VEGF, a key vascular permeability and angiogenic factor, is expressed in RA. In this study we utilised adenovirus expressing the secreted form of the extracellular domain of the Flt-1 VEGF receptor (sFlt-1) to inhibit VEGF in the collagen-induced arthritis (CIA) model, to determine whether blocking the effects of vegf might be an effective treatment for RA. AdvsFlt-1, administered intravenously on the first day of arthritis, significantly suppressed CIA. For example, on d 6 of arthritis the mean increase in paw thickness, which reflects oedema, for untreated and null adenovirus-treated animals was 0.23 ± 0.05 mm and 0.38 ± 0.08, respectively, compared to 0.07 ± 0.05 for AdvsFlt-1-treated mice (P < 0.001 vs. Adv0-treated and untreated mice by 2-way anova). Western blot analyses revealed the presence of a 100-kDa band, corresponding to human sFlt-1, in liver extracts from arthritic mice infected with AdvsFlt-1 at 24 h but not 72 h after infection. This band was absent in liver extracts from Adv0-infected mice and all synovial extracts. Measurement of protein levels by ELISA demonstrated the presence of sFlt-1 in liver, synovium and serum, although levels declined by 72 h post infection. These data suggest efficient but transient expression of sFlt-1. Sera from adenovirus infected mice were found to contain antiviral antibodies and additionally, sera from AdvsFlt-1-infected but not Adv0-infected mice recognised human recombinant sFlt-1. These observations demonstrate that adenoviral mediated delivery of human sFlt-1 leads to transient gene expression and suppression of CIA. This effect is reduced later in the course of disease due to the expression of antiadenovirus as well as antisFlt-1 antibodies. Future studies will assess the effect of combination treatment, using AdvsFlt-1 together with anti-TNF(antibody, to prolong the beneficial effects of VEGF blockade. These results suggest that blocking the pro-angiogenic and permeability action of VEGF may be beneficial for treatment of RA. [source]


Effect of inducible co-overexpression of protein disulfide isomerase and endoplasmic reticulum oxidoreductase on the specific antibody productivity of recombinant Chinese hamster ovary cells

BIOTECHNOLOGY & BIOENGINEERING, Issue 2 2010
Chaya Mohan
Abstract To enhance specific antibody (Ab) productivity (qAb) of recombinant Chinese hamster ovary (rCHO) cells, post-translational limitations in the endoplasmic reticulum during antibody production should be relieved. Previously, we reported that overexpression of protein disulfide isomerase (PDI), which catalyzes disulfide bond exchanges and assists in protein folding of newly synthesized proteins, enhanced qAb of rCHO cells by about 27% (Mohan et al., 2007, Biotechnol Bioeng 98:611,615) . Since the rate limiting step in disulfide bond formation is found to be the regeneration of oxidized PDI, the oxidation state of PDI, as well as the amount of PDI, might be important. Endoplasmic reticulum oxidoreductase (ERO1L) maintains PDI in an oxidized state so that disulfide bond formation occurs. Here, PDI and its helper protein, ERO1L were overexpressed in rCHO cells producing an Ab in an attempt to ease the bottleneck in disulfide bond formation, and hence, Ab folding and secretion. Transient expression of ERO1L alone and with PDI resulted in enhanced qAb by 37% and 55%, respectively. In contrast, under stable inducible co-overexpression of PDI and ERO1L, the qAb was unaffected or negatively affected by varying degrees, depending on the individual expression levels of these genes. In stable clones with altered oxidation state of PDI due to co-overexpression of PDI and ERO1L, secretion of Ab was hindered and PDI-associated retention of Ab was seen in the cells. Under transient gene expression, secretion of Ab was not compromised. The data presented here suggests a possible mechanism of PDI/ERO1L interaction with the target Ab and shows how the expression levels of these proteins could affect the qAb of this Ab-producing rCHO cell line. Biotechnol. Bioeng. 2010;107: 337,346. © 2010 Wiley Periodicals, Inc. [source]


Development of Auxotrophic Agrobacterium tumefaciens for Gene Transfer in Plant Tissue Culture

BIOTECHNOLOGY PROGRESS, Issue 3 2004
Jason I. Collens
Auxotrophic strains of Agrobacterium tumefaciens were generated for use in liquid co-culture with plant tissue for transient gene expression. Twenty-one auxotrophs were recovered from 1,900 tetracycline-resistant insertional mutants generated with a suicide vector transposon mutagenesis system. Twelve of these auxotrophs were characterized on a nutrient matrix. Isolates were screened for growth in plant cell and root culture, and three auxotrophs were identified that had limited growth: adenine (ade-24), leucine (leu-27), and cysteine (cys-32). Ade-24 displayed poor T-DNA delivery in a transient expression test delivering GUS from a binary vector, while cys-32 displayed the best ability to deliver DNA of these three auxotrophs. The growth yield of cys-32 on cysteine was assessed to provide a quantitative basis for co-culture nutrient supplementation. The utility of cys-32 for delivering T-DNA to plant tissues is demonstrated, where an 85-fold enhancement in GUS expression over wild-type A. tumefacienswas achieved. [source]