Transient Flow (transient + flow)

Distribution by Scientific Domains


Selected Abstracts


Analytical Methods for Transient Flow to a Well in a Confined-Unconfined Aquifer

GROUND WATER, Issue 4 2008
Li-Tang Hu
Concurrent existence of confined and unconfined zones of an aquifer can arise owing to ground water withdrawal by pumping. Using Girinskii's potential function, Chen (1974, 1983) developed an approximate analytical solution to analyze transient ground water flow to a pumping well in an aquifer that changes from an initially confined system to a system with both unconfined and confined regimes. This article presents the details of the Chen model and then compares it with the analytical model developed by Moench and Prickett (1972) for the same problem. Hypothetical pumping test examples in which the aquifer undergoes conversion from confined to water table conditions are solved by the two analytical models and also a numerical model based on MODFLOW. Comparison of the results suggests that the solutions of the Chen model give better results than the Moench and Prickett model except when the radial distance is very large or aquifer thickness is large compared with drawdown. [source]


The Development of New Analytic Elements for Transient Flow and Multiaquifer Flow

GROUND WATER, Issue 1 2006
O.D.L. Strack
We deal in this paper with an ongoing development of the analytic element method. We present in outline new analytic line elements that are suitable to model general flow fields, i.e., flow fields that possess a continuously varying areal inflow or outflow. These elements are constructed specifically to model the leakage through leaky layers that separate aquifers in leaky systems and to model transient effects. The leakage or release from storage underneath linear features is modeled precisely by the new elements; the singularity in leakage is matched exactly by the approximate solution. Applications are given for a problem involving leakage and for a case of transient flow. We note that the analytic elements can be used also to reproduce the effect of continuously varying aquifer properties, e.g., the hydraulic conductivity or the elevation of the base of the aquifer. In the latter case, the elements would reproduce the rotation of the flow field caused by the variation in properties, rather than the divergence as for the case of leakage. [source]


Influence of Transient Flow on Contaminant Biodegradation

GROUND WATER, Issue 2 2001
Mario Schirmer
The rate of biodegradation in contaminated aquifers depends to a large extent on dispersive mixing processes that are now generally accepted to result from spatial variations in the velocity field. It has been shown, however, that transient flow fields can also contribute to dispersive mixing. The influence of transient flow on biodegrading contaminants is particularly important since it can enhance mixing with electron acceptors, further promoting the reactive process. Using numerical simulations, the effect of transient flow on the behavior of a biodegradable contaminant is evaluated here both with respect to the development of apparently large horizontal transverse dispersion and also with respect to enhanced mixing between the substrate (electron donor) and electron acceptor. The numerical model BIO3D, which solves for advective-dispersive transport coupled with Monod-type biodegradation of substrates in the presence of an electron acceptor, was used for the simulations. The model was applied in a two-dimensional plan view mode considering a single substrate. Transient flow fields were found to yield larger apparent transverse dispersion because the longitudinal dispersivity also acts transverse to the mean flow direction. In the reactive case, the transient flow field increases substrate-oxygen mixing, which in turn enhances the overall rate of biodegradation. The results suggest that in the case of moderate changes of flow directions, a steady-state flow field can be justified, thereby avoiding the higher computational costs of a fully transient simulation. The use of a higher transverse horizontal dispersivity in a steady flow field can, under these conditions, adequately forecast plume development. [source]


Directions of preferential flow in a hillslope soil, 1.

HYDROLOGICAL PROCESSES, Issue 4 2005
Quasi-steady flow
Abstract Preferred infiltration is mainly perceived as vertically down whereas subsurface storm flow is thought to occur parallel to slopes. The transition from vertical to lateral flow in a layered hillslope soil is the focus of the contribution. Transient flow is assumed to move as a wetting front. Three time-domain reflectometry (TDR) wave-guides, each 0·15 m long, were mounted in the shape of a truncated tetrahedron with its peak pointing down. Each wave-guide focuses the front velocity along its axis. The three front-velocity vectors are decomposed into their x, y and z components, which are then assembled to the resultant velocity vector. The volume density flux of preferred flow is the product of the front velocity and the mobile water content. The latter is the amplitude of transient soil moisture measured with each wave-guide. The resultant vector of the volume flux density is computed similarly to the velocity vector. The experimental approach allows for the rapid assessment of transient flows without relying on the variation of water potentials. The experiments indicate that the directions of the resultant vectors of velocity and volume flux density can be estimated if the moisture variations of the three TDR wave-guides are strongly correlated during the passing of the wetting front. Copyright © 2004 John Wiley & Sons, Ltd. [source]


The Development of New Analytic Elements for Transient Flow and Multiaquifer Flow

GROUND WATER, Issue 1 2006
O.D.L. Strack
We deal in this paper with an ongoing development of the analytic element method. We present in outline new analytic line elements that are suitable to model general flow fields, i.e., flow fields that possess a continuously varying areal inflow or outflow. These elements are constructed specifically to model the leakage through leaky layers that separate aquifers in leaky systems and to model transient effects. The leakage or release from storage underneath linear features is modeled precisely by the new elements; the singularity in leakage is matched exactly by the approximate solution. Applications are given for a problem involving leakage and for a case of transient flow. We note that the analytic elements can be used also to reproduce the effect of continuously varying aquifer properties, e.g., the hydraulic conductivity or the elevation of the base of the aquifer. In the latter case, the elements would reproduce the rotation of the flow field caused by the variation in properties, rather than the divergence as for the case of leakage. [source]


Influence of Transient Flow on Contaminant Biodegradation

GROUND WATER, Issue 2 2001
Mario Schirmer
The rate of biodegradation in contaminated aquifers depends to a large extent on dispersive mixing processes that are now generally accepted to result from spatial variations in the velocity field. It has been shown, however, that transient flow fields can also contribute to dispersive mixing. The influence of transient flow on biodegrading contaminants is particularly important since it can enhance mixing with electron acceptors, further promoting the reactive process. Using numerical simulations, the effect of transient flow on the behavior of a biodegradable contaminant is evaluated here both with respect to the development of apparently large horizontal transverse dispersion and also with respect to enhanced mixing between the substrate (electron donor) and electron acceptor. The numerical model BIO3D, which solves for advective-dispersive transport coupled with Monod-type biodegradation of substrates in the presence of an electron acceptor, was used for the simulations. The model was applied in a two-dimensional plan view mode considering a single substrate. Transient flow fields were found to yield larger apparent transverse dispersion because the longitudinal dispersivity also acts transverse to the mean flow direction. In the reactive case, the transient flow field increases substrate-oxygen mixing, which in turn enhances the overall rate of biodegradation. The results suggest that in the case of moderate changes of flow directions, a steady-state flow field can be justified, thereby avoiding the higher computational costs of a fully transient simulation. The use of a higher transverse horizontal dispersivity in a steady flow field can, under these conditions, adequately forecast plume development. [source]


Orthogonality of modal bases in hp finite element models

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 11 2007
V. Prabhakar
Abstract In this paper, we exploit orthogonality of modal bases (SIAM J. Sci. Comput. 1999; 20:1671,1695) used in hp finite element models. We calculate entries of coefficient matrix analytically without using any numerical integration, which can be computationally very expensive. We use properties of Jacobi polynomials and recast the entries of the coefficient matrix so that they can be evaluated analytically. We implement this in the context of the least-squares finite element model although this procedure can be used in other finite element formulations. In this paper, we only develop analytical expressions for rectangular elements. Spectral convergence of the L2 least-squares functional is verified using exact solution of Kovasznay flow. Numerical results for transient flow over a backward-facing step are also presented. We also solve steady flow past a circular cylinder and show the reduction in computational cost using expressions developed herein. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Simulation of transient flow in pipelines for computer-based operations monitoring

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 3 2004
H. E. Emara-Shabaik
Abstract Computer models can provide the basis for real-time monitoring and control of fluid flow in pipelines. Problems of fluid flow in pipelines are mathematically represented by a non-linear system of coupled partial differential equations. In this paper, several numerical techniques are evaluated with respect to their suitability for the purpose of real-time monitoring of fluid flow in pipelines. The proposed techniques are evaluated in terms of the L1, the L2, and the L, error norms. Moreover, the developed simulators will be compared in terms of their speed of response and settling time which are essential factors for an effective real-time monitoring scheme. Finally, the selected simulation scheme is further tested under assumed pipeline leak conditions. Copyright © 2004 John Wiley & Sons, Ltd. [source]


A full 3D finite element analysis of the powder injection molding filling process including slip phenomena

POLYMER ENGINEERING & SCIENCE, Issue 1 2002
C. J. Hwang
A full 3D finite element analysis system has been developed to simulate a Powder Injection Molding (PIM) filling process for general three-dimensional parts. The most important features of the analysis system developed in this study are i) to incorporate the slip phenomena, the most notable rheological characteristics of PIM feedstock, into the finite element formulation based on a nonlinear penalty-like parameter and ii) to simulate the transient flow during the filling process with a predetermined finite element mesh with the help of a volume fill factor and a melt front smoothing scheme. The treatment of the nonlinear slip boundary condition was successfully validated via a steady state pipe flow. For the purpose of comparisons, not only the numerical simulations but also experimental short-shot experiments were performed with two 3D mold geometries using two typical materials of slip and no-slip cases. The good agreements between the numerical and experimental results indicate that the melt front tracking scheme successfully simulates the transient filling process. [source]


Directions of preferential flow in a hillslope soil, 1.

HYDROLOGICAL PROCESSES, Issue 4 2005
Quasi-steady flow
Abstract Preferred infiltration is mainly perceived as vertically down whereas subsurface storm flow is thought to occur parallel to slopes. The transition from vertical to lateral flow in a layered hillslope soil is the focus of the contribution. Transient flow is assumed to move as a wetting front. Three time-domain reflectometry (TDR) wave-guides, each 0·15 m long, were mounted in the shape of a truncated tetrahedron with its peak pointing down. Each wave-guide focuses the front velocity along its axis. The three front-velocity vectors are decomposed into their x, y and z components, which are then assembled to the resultant velocity vector. The volume density flux of preferred flow is the product of the front velocity and the mobile water content. The latter is the amplitude of transient soil moisture measured with each wave-guide. The resultant vector of the volume flux density is computed similarly to the velocity vector. The experimental approach allows for the rapid assessment of transient flows without relying on the variation of water potentials. The experiments indicate that the directions of the resultant vectors of velocity and volume flux density can be estimated if the moisture variations of the three TDR wave-guides are strongly correlated during the passing of the wetting front. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 7 2005
Jean-François Remacle
Abstract An anisotropic adaptive analysis procedure based on a discontinuous Galerkin finite element discretization and local mesh modification of simplex elements is presented. The procedure is applied to transient two- and three-dimensional problems governed by Euler's equation. A smoothness indicator is used to isolate jump features where an aligned mesh metric field in specified. The mesh metric field in smooth portions of the domain is controlled by a Hessian matrix constructed using a variational procedure to calculate the second derivatives. The transient examples included demonstrate the ability of the mesh modification procedures to effectively track evolving interacting features of general shape as they move through a domain. Copyright © 2004 John Wiley & Sons, Ltd. [source]