Transient Absorption (transient + absorption)

Distribution by Scientific Domains

Terms modified by Transient Absorption

  • transient absorption spectroscopy
  • transient absorption spectrum

  • Selected Abstracts


    Transient Osmotic Absorption of Fluid in Microvessels Exposed to Low Concentrations of Dimethyl Sulfoxide

    MICROCIRCULATION, Issue 1 2006
    CATHERINE A. GLASS
    ABSTRACT Dimethyl Sulfoxide (DMSO) is a common solvent for pharmacological agents. It is a small, lipophilic molecule thought to be relatively highly permeable through the cell membrane. While measuring the effect of low concentrations of DMSO (0.05,0.5% v/v) on capillary hydraulic conductivity as a vehicle control for pharmacological agents, the authors noticed what appeared to be an unusual transient absorption of fluid across the vessel wall. This absorption occurred during occlusion of the vessel, but dissipated quickly (1.7,8.6 s). The transient reabsorption reappeared upon each successive occlusion. To determine the nature of this transient absorption, the authors have measured the effect of increasing the pressure of the perfusing solution, of the concentration and time of perfusion of DMSO, and of superfusing the DMSO. They found that the absorption rate, but not the filtration rate, was concentration dependent, and was significantly correlated with the osmotic pressure of the DMSO. Moreover, the time taken for completion of the transient, i.e., time to reversal of flow, was inversely proportional to the hydraulic conductivity of the vessel. Furthermore, the transient absorption could be reduced and eventually abolished by increasing the hydrostatic pressure. These results strongly suggested that perfusion with low concentrations of DMSO could set up a significant osmotic pressure gradient across the vessel wall. This proposed mechanism for the absorption was confirmed by the measurement of a significant osmotic reflection coefficient of the vessel wall to DMSO (0.11 ± 0.01). Relatively low concentrations (0.05,0.5%) of DMSO were therefore able to stimulate a significant osmotic transient across the blood vessel walls. [source]


    Infrared transient absorption spectra for excited transition of excitons and biexcitons in CuCl

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 1 2009
    Takaaki Yoshioka
    Abstract Infrared transient absorption (IRTA) spectra for excitons and biexcitons in CuCl bulk crystal have been measured by pump-probe spectroscopy. The IRTA peak energy of the exciton agrees with the transition energy between Rydberg 1s to 2p states reported in one- and two-photon absorption measurement. On the other hand, the IRTA peak energy of the biexcitons locates in energy higher than that of the excitons, which is reasonable by taking hydrogen molecule model into account. In addition, our results support the enhancement of the transition energy between 1s and 2p states in quantum dots compared to the bulk case. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Conjugated Macrocycles as Active Materials in Nonlinear Optical Processes: Optical Limiting Effect with Phthalocyanines and Related Compounds

    THE CHEMICAL RECORD, Issue 3 2002
    Michael Hanack
    Abstract An overview of the optical limiting (OL) processes in phthalocyanines and related compounds is presented, particularly a description of the synthesis and relevant optical properties of a series of axially substituted indium(III), titanium(IV), phthalo- and naphthalocyanines, and octaarylporphyrazines. Several techniques, such as transient absorption, Z-scan, and degenerate four-wave mixing, were used to assess the optical properties and OL performance of the investigated compounds. The versatility of the methods of organic synthesis leads to the achievement of effective systems in terms of OL performance through the appropriate combination and modulation of several structural components. The chemistry of the macrocycles here considered allows the variation of the different chemical features, such as the degree of electronic conjugation of the macrocycle and the nature of the ring substituents, the central atom, and the ligands attached to the central atom. © 2002 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 2: 129,148, 2002: Published online in Wiley InterScience (www.interscience.wiley.com) DOI 10.1002/tcr.10024 [source]


    A Time-Resolved Spectroscopic Study of the Bichromophoric Phototrigger 3,,5,-Dimethoxybenzoin Diethyl Phosphate: Interaction Between the Two Chromophores Determines the Reaction Pathway

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 17 2010
    Chensheng Ma Dr.
    Abstract 3,,5,-Dimethoxybenzoin (DMB) is a bichromophoric system that has widespread application as a highly efficient photoremovable protecting group (PRPG) for the release of diverse functional groups. The photodeprotection of DMB phototriggers is remarkably clean, and is accompanied by the formation of a biologically benign cyclization product, 3,,5,-dimethoxybenzofuran (DMBF). The underlying mechanism of the DMB deprotection and cyclization has, however, until now remained unclear. Femtosecond transient absorption (fs-TA) spectroscopy and nanosecond time-resolved resonance Raman (ns-TR3) spectroscopy were employed to detect the transient species directly, and examine the dynamic transformations involved in the primary photoreactions for DMB diethyl phosphate (DMBDP) in acetonitrile (CH3CN). To assess the electronic character and the role played by the individual sub-chromophore, that is, the benzoyl, and the di- meta -methoxybenzylic moieties, for the DMBDP deprotection, comparative fs-TA measurements were also carried out for the reference compounds diethyl phosphate acetophenone (DPAP), and 3,,5,-dimethoxybenzylic diethyl phosphate (DMBnDP) in the same solvent. Comparison of the fs-TA spectra reveals that the photoexcited DMBDP exhibits distinctly different spectral character and dynamic evolution from those of the reference compounds. This fact, combined with the related steady-state spectral and density functional theoretical results, strongly suggests the presence in DMBDP of a significant interaction between the two sub-chromophores, and that this interaction plays a governing role in determining the nature of the photoexcitation and the reaction channel of the subsequent photophysical and photochemical transformations. The ns-TR3 results and their correlation with the fs-TA spectra and dynamics provide evidence for a novel concerted deprotection,cyclization mechanism for DMBDP in CH3CN. By monitoring the direct generation of the transient DMBF product, the cyclization time constant was determined unequivocally to be ,1,ns. This indicates that there is little relevance for the long-lived intermediates (>10,ns) in giving the DMBF product, and excludes the stepwise mechanism proposed in the literature as the major pathway for the DMB cyclization reaction. This work provides important new insights into the origin of the 3,,5,-dimethoxy substitution effect for the DMB photodeprotection. It also helps to clarify the many different views presented in previous mechanistic studies of the DMB PRPGs. In addition to this, our fs-TA results on the reference compound DMBnDP in CH3CN provide the first direct observation (to the best of our knowledge) showing the predominance of a prompt (,2,ps) heterolytic bond cleavage after photoexcitation of meta -methoxybenzylic compounds. This provides insight into the long-term controversies about the photoinitiated dissociation mode of related substituted benzylic compounds. [source]


    Triplet MLCT Photosensitization of the Ring-Closing Reaction of Diarylethenes by Design and Synthesis of a Photochromic Rhenium(I) Complex of a Diarylethene-Containing 1,10-Phenanthroline Ligand

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 22 2006
    Chi-Chiu Ko Dr.
    Abstract Synthesis of the diarylethene-containing ligand L1 based on Suzuki cross-coupling reaction between thienyl boronic acid and the dibromophenanthroline ligand is reported. On coordination to the rhenium(I) tricarbonyl complex system, the photochromism of L1 could be photosensitized and consequently extended from intraligand excitation at ,,340 nm in the free ligand to metal-to-ligand charge-transfer (MLCT) excitation at ,,480 nm in the complex. The photochromic reactions were studied by 1H NMR, UV/Vis, and steady-state emission spectroscopy. Photosensitization was further probed by ultrafast transient absorption and time-resolved emission spectroscopy. The results provided direct evidence that the formation of the closed form by the MLCT-sensitized photochromic process was derived from the 3MLCT excited state. This supports the photosensitization mechanism, which involves an intramolecular energy-transfer process from the 3MLCT to the 3IL(L1) state that initiated the ring-closure reaction. The photophysical and electrochemical properties of the complex were also investigated. [source]


    Singlet Energy Dissipation in the Photosystem II Light-Harvesting Complex Does Not Involve Energy Transfer to Carotenoids

    CHEMPHYSCHEM, Issue 6 2010
    Marc G. Müller Dr.
    Abstract The energy dissipation mechanism in oligomers of the major light-harvesting complex II (LHC II) from Arabidopsis thaliana mutants npq1 and npq2, zeaxanthin-deficient and zeaxanthin-enriched, respectively, has been studied by femtosecond transient absorption. The kinetics obtained at different excitation intensities are compared and the implications of singlet,singlet annihilation are discussed. Under conditions where annihilation is absent, the two types of LHC II oligomers show distributive biexponential (bimodal) kinetics with lifetimes of ,5,20 ps and ,200,400 ps having transient spectra typical for chlorophyll excited states. The data can be described kinetically by a two-state compartment model involving only chlorophyll excited states. Evidence is provided that neither carotenoid excited nor carotenoid radical states are involved in the quenching mechanism at variance with earlier proposals. We propose instead that a chlorophyll,chlorophyll charge-transfer state is formed in LHC II oligomers which is an intermediate in the quenching process. The relevance to non-photochemical quenching in vivo is discussed. [source]


    Photochemical Z,E Isomerization of a Hemithioindigo/Hemistilbene ,-Amino Acid

    CHEMPHYSCHEM, Issue 11 2007
    Thorben Cordes
    Abstract The molecule HTI, which combines hemithioindigo and hemistilbene molecular parts, allows reversible switching between two isomeric states. Photochromic behaviour of the HTI molecule is observed by irradiation with UV/Vis light. The photochemical reaction, a Z/E isomerization around the central double bond connecting the two molecular parts, is investigated by transient absorption and emission spectroscopy. For a special HTI molecule, namely, an ,-amino acid, the Z,E isomerization process occurs on a timescale of 30 ps. In the course of the reaction fast processes on the 1,10 ps timescale are observed which point to motions of the molecule on the potential-energy surface of the excited state. The combination of transient absorption experiments in the visible spectral range with time-resolved fluorescence and infrared measurements reveal a photochemical pathway with three intermediate states. Together with a theoretical modelling procedure the experiments point to a sequential reaction scheme and give indications of the nature of the involved intermediates. [source]


    Singlet,Singlet Annihilation Leading to a Charge-Transfer Intermediate in Chromophore-End-Capped Pentaphenylenes

    CHEMPHYSCHEM, Issue 9 2007
    Eduard Fron Dr.
    Abstract The excited-state properties of two peryleneimide chromophore end-capped pentaphenylene compounds were investigated in detail using femtosecond transient absorption and single-photon timing experiments. Singlet,singlet annihilation was found to promote one chromophore into a higher excited state and results in the formation of an ultra-short-living intermediate charge-transfer (CT) state in the Sn,S1 deactivation pathway. In low-polarity solvents, this CT state is found to be energetically higher than the first excited state and thus cannot be populated via one-photon excitation. The observed CT state decays with a time constant of about 1 ps to form the lowest singlet excited state. These results demonstrate the potential use of the singlet,singlet annihilation as a novel tool in studying reactions occurring in states that are energetically above the S1. [source]