Transgenic Rats (transgenic + rat)

Distribution by Scientific Domains

Terms modified by Transgenic Rats

  • transgenic rat model

  • Selected Abstracts


    Effect of Visible Light on Normal and P23H-3 Transgenic Rat Retinas: Characterization of a Novel Retinoic Acid Derivative Present in the P23H-3 Retina

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2006
    Todd Duncan
    ABSTRACT Transgenic rats with the P23H mutation in rhodopsin exhibit increased susceptibility to light damage, compared with normal animals. It is known that light-induced retinal damage requires repetitive bleaching of rhodopsin and that photoreceptor cell loss is by apoptosis; however, the underlying molecular mechanism(s) leading to photoreceptor cell death are still unknown. Photoproducts, such as all- trans retinal or other retinoid metabolites, released by the extensive bleaching of rhodopsin could lead to activation of degenerative processes, especially in animals genetically predisposed to retinal degenerations. Using wild-type and transgenic rats carrying the P23H opsin mutation, we evaluated the effects of acute intense visible light on retinoid content, type and distribution in ocular tissues. Rats were exposed to green light (480,590 nm) for 0, 5, 10, 30 and 120 min. Following light treatment, rats were sacrificed and neural retinas were dissected free of the retinal pigment epithelium. Retinoids were extracted from retinal tissues and then subjected to HPLC and mass spectral analysis. We found that the light exposure affected relative levels of retinoids in the neural retina and retinal pigment epithelium of wild-type and P23H rat eyes similarly. In the P23H rat retina but not the wild-type rat retina, we found a retinoic acid-like compound with an absorbance maximum of 357 nm and a mass of 304 daltons. Production of this retinoic acid-like compound in transgenic rats is influenced by the age of the animals and the duration of light exposure. It is possible that this unique retinoid may be involved in the process of light-induced retinal degeneration. [source]


    Truncated tau expression levels determine life span of a rat model of tauopathy without causing neuronal loss or correlating with terminal neurofibrillary tangle load

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2008
    Peter Koson
    Abstract We have previously demonstrated in a transgenic rat model of tauopathy that human misfolded truncated tau derived from Alzheimer's disease suffices to drive neurofibrillary degeneration in vivo. We employed this model to investigate the impact of truncated tau expression levels on life span, neuronal loss and the final load of neurofibrillary tangles (NFTs) in transgenic rats. Two independent transgenic lines (SHR72, SHR318), that display different expression levels of truncated tau, were utilized in this study. We found that transgene expression levels in the brain of SHR72 rats were 44% higher than in SHR318 rats and that truncated tau protein levels determined the survival rate of transgenic rats. The line with higher expression levels of truncated tau (SHR72) showed decreased median survival (222.5 days) when compared with the line with lower expression (SHR318; 294.5 days). Interestingly, NFT loads (total NFT/total neurons) were very similar in terminal stages of disease in both transgenic lines (SHR72 , 10.9%; SHR318 , 11.6%), despite significantly different expression levels of truncated tau. Moreover, mean neuron numbers in the hippocampus (CA1,3) and brain stem (gigantocellular reticular nucleus) in the two transgenic rat strains in the terminal stages of disease were similar, and did not differ significantly from those observed in age-matched non-transgenic controls. These findings suggest that the expression levels of misfolded truncated tau determine the life span in a transgenic rat model of tauopathy without causing neuronal loss or correlating with terminal NFT load. [source]


    Overexpression of APP provides neuroprotection in the absence of functional benefit following middle cerebral artery occlusion in rats

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2007
    Jared Clarke
    Abstract Cerebral ischaemia leads to a transient accumulation of ,-amyloid precursor protein (APP) and ,-amyloid (A,) peptides adjacent to the ischaemic lesion. There is conflicting evidence that APP/A, fragments may either enhance neuronal plasticity or be neurotoxic. The aim of the current study was to assess the effect of overexpression of human APP in rats on functional recovery following cerebral ischaemia. Adult APP-overexpressing (hAPP695 Tg) rats subjected to transient middle cerebral artery occlusion (MCAO) had significantly smaller infarct volumes than non-transgenic littermates, yet did not perform better on a series of sensorimotor or learning tests during a 6-month follow-up period. In fact, transgenic animals were found to be significantly more impaired in both the beam-walking and Morris water maze tests following MCAO. Immunohistochemistry showed human A,-positive staining in the cortex and hippocampus of APP transgenic rats. The present data suggest that while overexpression of APP in rats may provide some histological neuroprotection in the event of cerebral ischaemia, this does not translate into significant functional recovery. [source]


    Expression and regulation of L-cystine transporter, system xc,, in the newly developed rat retinal Müller cell line (TR-MUL)

    GLIA, Issue 3 2003
    Masatoshi Tomi
    Abstract The purpose of the present study was to elucidate the expression and regulation of the L-cystine transporter, system xc,, in Müller cells. In this study, newly developed conditionally immortalized rat Müller cell lines (TR-MUL) from transgenic rats harboring the temperature-sensitive SV 40 large T-antigen gene were used as an in vitro model. TR-MUL cells express large T-antigen and grow well at 33°C with a doubling time of 30 h, but do not grow at 39°C. TR-MUL cells express typical Müller cell markers such as S-100, glutamine synthetase, and EAAT1/GLAST, whereas EAAT2/GLT-1 and EAAT5 are not detected. TR-MUL cells also exhibit little or no expression of glial fibrillary acidic protein. We found that TR-MUL5 cells exhibited [14C]L-cystine uptake activity and expressed xCT and 4F2hc, which involve system xc,. The uptake of [14C]L-cystine was significantly inhibited by L-glutamic acid and L-aspartic acid, whereas L-leucine had no effect. Following diethyl maleate (DEM) treatment, the glutathione concentration in TR-MUL5 cells was reduced in the first 24 h, then gradually recovered for more than 24 h. The L-cystine uptake rate and the xCT expression level in TR-MUL5 cells were enhanced by DEM treatment. In contrast, the 4F2hc expression level was unchanged. In conclusion, TR-MUL cells have the properties of Müller cells and exhibit system xc, -mediated L-cystine uptake activity. The oxidative stress conditions following DEM treatment activate L-cystine transport in TR-MUL cells due to the enhanced transcription of the xCT gene. GLIA 9999:000,000, 2003. © 2003 Wiley-Liss, Inc. [source]


    From HLA-B27 to spondyloarthritis: a journey through the ER

    IMMUNOLOGICAL REVIEWS, Issue 1 2010
    Robert A. Colbert
    Summary:, Almost four decades of research into the role of human leukocyte antigen-B27 (HLA-B27) in susceptibility to spondyloarthritis has yet to yield a convincing answer. New results from an HLA-B27 transgenic rat model now demonstrate quite convincingly that CD8+ T cells are not required for the inflammatory phenotype. Discoveries that the HLA-B27 heavy chain has a tendency to misfold during the assembly of class I complexes in the endoplasmic reticulum (ER) and to form aberrant disulfide-linked dimers after transport to the cell surface have forced the generation of new ideas about its role in disease pathogenesis. In transgenic rats, HLA-B27 misfolding generates ER stress and leads to activation of the unfolded protein response, which dramatically enhances the production of interleukin-23 (IL-23) in response to pattern recognition receptor agonists. These findings have led to the discovery of striking T-helper 17 cell activation and expansion in this animal model, consistent with results emerging from humans with spondyloarthritis and the discovery of IL23R as an additional susceptibility gene for ankylosing spondylitis. Together, these results suggest a novel link between HLA-B27 and the T-helper 17 axis through the consequences of protein misfolding and open new avenues of investigation as well as identifying new targets for therapeutic intervention in this group of diseases. [source]


    CD4+ T lymphocytes mediate colitis in HLA-B27 transgenic rats monoassociated with nonpathogenic Bacteroides vulgatus

    INFLAMMATORY BOWEL DISEASES, Issue 3 2007
    Frank Hoentjen MD
    Abstract Background: HLA-B27/,2 microglobulin transgenic (TG) rats develop spontaneous colitis when raised under specific pathogen-free (SPF) conditions or after monoassociation with Bacteroides vulgatus (B. vulgatus), whereas germ-free TG rats fail to develop intestinal inflammation. SPF HLA-B27 TG rnu/rnu rats, which are congenitally athymic, remain disease free. These results indicate that commensal intestinal bacteria and T cells are both pivotal for the development of colitis in TG rats. However, it is not known if T cells are also required in the induction of colitis by a single bacterial strain. The aim of this study was therefore to investigate the role of T cells in the development of colitis in B. vulgatus,monoassociated HLA-B27 TG rats. Methods: HLA-B27 TG rnu/rnu and rnu/+ rats were monoassociated with B. vulgatus for 8,12 weeks. CD4+ T cells from mesenteric lymph nodes (MLNs) of B. vulgatus,monoassociated rnu/+ TG donor rats were transferred into B. vulgatus,monoassociated rnu/rnu TG recipients. Results:B. vulgatus,monoassociated rnu/+ rats showed higher histologic inflammatory scores and elevated colonic interferon-, mRNA, cecal myeloperoxidase, and cecal IL-1, levels compared to those in rnu/rnu TG rats that did not contain T cells. After transfer of CD4+ cells from colitic B. vulgatus,monoassociated rnu/+ TG donor rats, B. vulgatus,monoassociated rnu/rnu TG recipients developed colitis that was accompanied by B. vulgatus- induced IFN-, production by MLN cells in vitro and inflammatory parameters similar to rnu/+ TG rats. Conclusions: These results implicate CD4+ T cells in the development of colitis in HLA-B27 TG rats monoassociated with the nonpathogenic bacterial strain B. vulgatus. (Inflamm Bowel Dis 2007) [source]


    The renin,angiotensin system as a primary cause of polyarteritis nodosa in rats

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 6a 2010
    Barbara S. Peters
    Abstract Polyarteritis nodosa is a necrotizing vasculitis of medium-sized arteries of unknown origin. Hypertension is present in 30% of patients with polyarteritis nodosa. In those cases, high renin levels are thought to be secondary to renal involvement. The present study was performed to identify causal factors of polyarteritis nodosa. In cyp1a1ren-2 transgenic rats, vasculitis of medium-sized arteries resembling classical polyarteritis nodosa can be induced. In this model, oral administration of indole-3-carbinol (I3C) activates the liver-specific cyp1a1 promoter, leading to prorenin expression in a dose-dependent manner. After the first 6 weeks of chronic induction with 0.125% I3C, the mean arterial pressure reached a plateau of about 170 mmHg. Ten out of 11 I3C-treated rats, which were chronically instrumented with a telemetric device to measure blood pressure, developed polyarteritis nodosa within 10 weeks of I3C treatment. I3C alone or instrumentation alone did not cause polyarteritis nodosa. The angiotensin-converting enzyme inhibitor captopril completely prevented the development of polyarteritis nodosa, indicating that local angiotensin II generation is a pathogenetic factor in this model. The renin,angiotensin system can play a primary role in the development of polyarteritis nodosa in rats. [source]


    Role of endogenous regucalcin in transgenic rats: Suppression of kidney cortex cytosolic protein phosphatase activity and enhancement of heart muscle microsomal Ca2+ -ATPase activity

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2002
    Masayoshi Yamaguchi
    Abstract Rats were generated by pronuclear injection of the transgene with a cDNA construct encoding rat regucalcin that is a regulatory protein of Ca2+ signaling. Transgenic (TG) founders were fertile, transmitted the transgene at the expected frequency, and bred to homozygote. Western analysis of the cytosol prepared from the tissue of TG female rats (5-week-old) showed a remarkable expression of regucalcin (3.3 kDa) protein in the liver, kidney cortex, heart, lung, stomach, brain, spleen, muscle, colon, and duodenum. Regucalcin expression of TG male rats was seen in the liver, kidney cortex, heart, and lung. In wild-type (wt) male and female rats, regucalcin was mainly present in the liver and kidney cortex. Regucalcin inhibited protein phosphatase activity in rat kidney cortex cytosol and activated Ca2+ -ATPase activity in rat heart muscle microsomes. The suppressive effect of regucalcin on protein phosphatase activity was significantly enhanced in the cytosol of kidney cortex of TG male and female rats as compared with those of wt rats. Likewise, heart muscle microsomal Ca2+ -ATPase activity was significantly enhanced in TG rats. The changes in their enzyme's activities in TG rats were completely abolished in the presence of anti-regucalcin monoclonal antibody (100 ng/ml) in the enzyme reaction mixture. Moreover, the body weight of TG female rats was significantly lowered as compared with that of wt rats. Serum inorganic phosphorus concentration was significantly increased in TG male and female rats, while serum calcium, glucose, triglyceride, free cholesterol, albumin, and urea nitrogen concentrations were not significantly altered in TG rats. Regucalcin TG rats should be a useful model to define a regulatory role of endogenous regucalcin in the tissues in vivo. J. Cell. Biochem. 86: 520,529, 2002. © 2002 Wiley-Liss, Inc. [source]


    Peripheral Nerve pericytes originating from the blood,nerve barrier expresses tight junctional molecules and transporters as barrier-forming cells

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2008
    Fumitaka Shimizu
    The objective of this study was to establish pure blood,nerve barrier (BNB)-derived peripheral nerve pericyte cell lines and to investigate their unique properties as barrier-forming cells. We isolated peripheral nerve, brain, and lung pericytes from transgenic rats harboring the temperature-sensitive simian virus 40 large T-antigen gene. These cell lines expressed several pericyte markers such as ,-smooth muscle actin, NG2, osteopontin, and desmin, whereas they did not express endothelial cell markers such as vWF and PECAM. In addition, these cell lines expressed several tight junction molecules such as occludin, claudin-12, ZO-1, and ZO-2. In particular, the expression of occludin was detected in peripheral nerve and brain pericytes, although it was not detected in lung pericytes by a Western blot analysis. An immunocytochemical analysis confirmed that occludin and ZO-1 were localized at the cell,cell boundaries among the pericytes. Brain and peripheral nerve pericytes also showed significantly higher trans-pericyte electrical resistance values and lower inulin clearances than lung pericytes. We considered that occludin localized at the cell,cell boundaries among the pericytes might mechanically stabilize the microvessels of the BNB and the blood,brain barrier. Furthermore, we also showed that these cell lines expressed many barrier-related transporters. ABCG2, p-gp, MRP-1, and Glut-1 were detected by a Western blot analysis and were observed in the cytoplasm and outer membrane by an immunocytochemical analysis. These transporters on pericytes might facilitate the peripheral nerve-to-blood efflux and blood-to-peripheral nerve influx transport of substrates in cooperation with those on endothelial cells in order to maintain peripheral nerve homeostasis. J. Cell. Physiol. 217: 388,399, 2008. © 2008 Wiley-Liss, Inc. [source]


    Loss of metabotropic glutamate receptor-mediated regulation of glutamate transport in chemically activated astrocytes in a rat model of amyotrophic lateral sclerosis

    JOURNAL OF NEUROCHEMISTRY, Issue 3 2006
    Céline Vermeiren
    Abstract Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a selective loss of motor neurones accompanied by intense gliosis in lesioned areas of the brain and spinal cord. Glutamate-mediated excitotoxicity resulting from impaired astroglial uptake constitutes one of the current pathophysiological hypotheses explaining the progression of the disease. In this study, we examined the regulation of glutamate transporters by type 5 metabotropic glutamate receptor (mGluR5) in activated astrocytes derived from transgenic rats carrying an ALS-related mutated human superoxide dismutase 1 (hSOD1G93A) transgene. Cells from transgenic animals and wild-type littermates showed similar expression of glutamate,aspartate transporter and glutamate transporter 1 (GLT-1) after in vitro activation, whereas cells carrying the hSOD1 mutation showed a three-fold higher expression of functional mGluR5, as observed in the spinal cord of end-stage animals. In cells from wild-type animals, (S)-3,5-dihydroxyphenylglycine (DHPG) caused an immediate protein kinase C (PKC)-dependent up-regulation of aspartate uptake that reflected the activation of GLT-1. Although this effect was mimicked in both cultures by direct activation of PKC using phorbol myristate acetate, DHPG failed to up-regulate aspartate uptake in cells derived from the transgenic rats. The failure of activated mGluR5 to increase glutamate uptake in astrocytes derived from this animal model of ALS supports the theory of glutamate excitotoxicity in the pathogenesis of the disease. [source]


    Early Electrophysiological Changes In Transgenic Rat Model Of Charcot-Marie-Tooth

    JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 1 2001
    M Grandis
    Recently, a reliable transgenic rat model of human Charcot-Marie-Tooth type 1 A has been developed. So far, neurophysiological studies have been performed only in advanced stages of rat disease. Moreover, axonal involvement, which is known to occur in human CMT1A, has never been observed in this rat model. Affected rats show overexpression of Peripheral Myelin Protein (PMP-22) and a peripheral hypomyelinating neuropathy. We perfomed an electrophysiological study in two heterozygous PMP-22 transgenic rats and in one normal control, matched for age (3 weeks) and weight (average: 60 g). Recordings were performed in vivo by stimulating the sciatic nerve at both sciatic notch and ankle sites and recording the Hoffman reflex and direct muscle responses (CMAP). The H-reflex related SNCV and MNCV were calculated by measuring the distance between the sciatic notch and the ankle sites and the respective latencies. The two transgenic rats showed different levels of PMP-22 overexpression, as judged by quantitative PCR. The rat with a lower PMP-22 gene level showed a 30% reduction of MNCV compared to the normal control, while SNCV was not reduced. The CMAP was sized approximately 45% of the normal rat while the ratio between H wave amplitude and CMAP was 30% of the normal, the H wave amplitude being more affected than the CMAP. The action potentials in the rat with a higher transgene level were not recordable. Our data demonstrate that slowing of MNCV is an early finding in the CMT1A rat model. The marked reduction of H wave amplitude in front of a normal SNCV suggests a possible early axonal damage of sensory fibers. The entity of electrophysiological compromission positively correlated with the number of copies for PMP-22 gene. All together these considerations prove the sensitivity of this method, however further studies are needed to confirm these results and to prove that this model may be suitable to investigate the effects of therapeutic approaches. [source]


    Induction of apoptosis in the LNCaP human prostate carcinoma cell line and prostate adenocarcinomas of SV40T antigen transgenic rats by the Bowman,Birk inhibitor

    PATHOLOGY INTERNATIONAL, Issue 11 2009
    MingXi Tang
    The soybean-derived serine protease inhibitor, Bowman,Birk inhibitor (BBI), has been reported as a potent chemoprevention agent against several types of tumors. The present study was undertaken to evaluate the effects of BBI on androgen-sensitive/dependent prostate cancers using a human prostate cancer cell (LNCaP) and the transgenic rats developing adenocarcinoma of the prostate (TRAP) model. Treatment of LNCaP prostate cancer cells with 500 µg/mL BBI resulted in inhibition of viability measured on WST-1 assays, with induction of connexin 43 (C×43) and cleaved caspase-3 protein expression. Feeding of 3% roughly prepared BBI (BBIC) to TRAP from the age 3 weeks to 13 weeks resulted in significant reduction of the relative epithelial areas within the acinus and multiplicity of the adenocarcinomas in the lateral prostate lobes. C×43- and terminal deoxynucleotidyl transferase mediated dUTP-biotin end labeling of fragmented DNA (TUNEL)-positive apoptotic cancer cells were more frequently observed in the lateral prostates treated with BBIC than in the controls. These in vivo and in vitro results suggest that BBI possesses chemopreventive activity associated with induction of C×43 expression and apoptosis. [source]


    Effect of Visible Light on Normal and P23H-3 Transgenic Rat Retinas: Characterization of a Novel Retinoic Acid Derivative Present in the P23H-3 Retina

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2006
    Todd Duncan
    ABSTRACT Transgenic rats with the P23H mutation in rhodopsin exhibit increased susceptibility to light damage, compared with normal animals. It is known that light-induced retinal damage requires repetitive bleaching of rhodopsin and that photoreceptor cell loss is by apoptosis; however, the underlying molecular mechanism(s) leading to photoreceptor cell death are still unknown. Photoproducts, such as all- trans retinal or other retinoid metabolites, released by the extensive bleaching of rhodopsin could lead to activation of degenerative processes, especially in animals genetically predisposed to retinal degenerations. Using wild-type and transgenic rats carrying the P23H opsin mutation, we evaluated the effects of acute intense visible light on retinoid content, type and distribution in ocular tissues. Rats were exposed to green light (480,590 nm) for 0, 5, 10, 30 and 120 min. Following light treatment, rats were sacrificed and neural retinas were dissected free of the retinal pigment epithelium. Retinoids were extracted from retinal tissues and then subjected to HPLC and mass spectral analysis. We found that the light exposure affected relative levels of retinoids in the neural retina and retinal pigment epithelium of wild-type and P23H rat eyes similarly. In the P23H rat retina but not the wild-type rat retina, we found a retinoic acid-like compound with an absorbance maximum of 357 nm and a mass of 304 daltons. Production of this retinoic acid-like compound in transgenic rats is influenced by the age of the animals and the duration of light exposure. It is possible that this unique retinoid may be involved in the process of light-induced retinal degeneration. [source]


    Human neural stem cell grafts in the spinal cord of SOD1 transgenic rats: Differentiation and structural integration into the segmental motor circuitry

    THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 4 2009
    Leyan Xu
    Abstract Cell replacement strategies for degenerative and traumatic diseases of the nervous system depend on the functional integration of grafted cells into host neural circuitry, a condition necessary for the propagation of physiological signals and, perhaps, targeting of trophic support to injured neurons. We have recently shown that human neural stem cell (NSC) grafts ameliorate motor neuron disease in SOD1 transgenic rodents. Here we study structural aspects of integration of neuronally differentiated human NSCs in the motor circuitry of SOD1 G93A rats. Human NSCs were grafted into the lumbar protuberance of 8-week-old SOD1 G93A rats; the results were compared to those on control Sprague-Dawley rats. Using pre-embedding immuno-electron microscopy, we found human synaptophysin (+) terminals contacting the perikarya and proximal dendrites of host , motor neurons. Synaptophysin (+) terminals had well-formed synaptic vesicles and were associated with membrane specializations primarily in the form of symmetrical synapses. To analyze the anatomy of motor circuits engaging differentiated NSCs, we injected the retrograde transneuronal tracer Bartha-pseudorabies virus (PRV) or the retrograde marker cholera toxin B (CTB) into the gastrocnemius muscle/sciatic nerve of SOD1 rats before disease onset and also into control rats. With this tracing, NSC-derived neurons were labeled with PRV but not CTB, a pattern suggesting that PRV entered NSC-derived neurons via transneuronal transfer from host motor neurons but not via direct transport from the host musculature. Our results indicate an advanced degree of structural integration, via functional synapses, of differentiated human NSCs into the segmental motor circuitry of SOD1-G93A rats. J. Comp. Neurol. 514:297,309, 2009. © 2009 Wiley-Liss, Inc. [source]


    Dendritic cells from spondylarthritis-prone HLA,B27,transgenic rats display altered cytoskeletal dynamics, class II major histocompatibility complex expression, and viability

    ARTHRITIS & RHEUMATISM, Issue 9 2009
    Maarten Dhaenens
    Objective Spondylarthritis (SpA) is characterized by spinal and peripheral joint inflammation, frequently combined with extraarticular manifestations. Despite the well-established association of SpA with the class I major histocompatibility complex (MHC) allele HLA,B27, there are still different, parallel hypotheses on the relationship between HLA,B27 and disease mechanisms. The present study was undertaken to investigate several characteristics of mature dendritic cells (DCs), which are believed to be essential for triggering disease in a model of SpA in HLA,B27,transgenic rats. Methods We combined different whole-proteome approaches (2-dimensional polyacrylamide gel electrophoresis and iTRAQ) to define the most aberrant molecular processes occurring in spleen DCs. Videomicroscopy and flow cytometry were used to confirm both cytoskeletal and class II MHC expression deficiencies. Results Our proteome studies provided evidence of up-regulation of proteins involved in class I MHC loading, and unfolded protein response, along with a striking down-regulation of several cytoskeleton-reorganizing proteins. The latter result was corroborated by findings of deficient motility, altered morphology, and decreased immunologic synapse formation. Furthermore, class II MHC surface expression was reduced in DCs from B27-transgenic rats, and this could be linked to differences in class II MHC,induced apoptotic sensitivity. Finally, we found reduced viability of the CD103+CD4, DC subpopulation, which likely exerts tolerogenic function. Conclusion Taken together, our findings have different important implications regarding the physiology of B27-transgenic rat DCs, which have a putative role in spontaneous disease in these rats. In particular, the reduced motility and viability of putatively tolerogenic CD4+ DCs could play an important role in initiating the inflammatory process, resulting in SpA. [source]


    HLA,B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats

    ARTHRITIS & RHEUMATISM, Issue 9 2009
    Monica L. DeLay
    Objective To determine whether HLA,B27 misfolding and the unfolded protein response (UPR) result in cytokine dysregulation and whether this is associated with Th1 and/or Th17 activation in HLA,B27/human ,2 -microglobulin (Hu,2m),transgenic rats, an animal model of spondylarthritis. Methods Cytokine expression in lipopolysaccharide (LPS),stimulated macrophages was analyzed in the presence and absence of a UPR induced by chemical agents or by HLA,B27 up-regulation. Cytokine expression in colon tissue and in cells purified from the lamina propria was determined by real-time reverse transcription,polymerase chain reaction analysis, and differences in Th1 and Th17 CD4+ T cell populations were quantified after intracellular cytokine staining. Results Interleukin-23 (IL-23) was found to be synergistically up-regulated by LPS in macrophages undergoing a UPR induced by pharmacologic agents or by HLA,B27 misfolding. IL-23 was also increased in the colon tissue from B27/Hu,2m-transgenic rats concurrently with the development of intestinal inflammation, and IL-17, a downstream target of IL-23, exhibited robust up-regulation in a similar temporal pattern. IL-23 and IL-17 transcripts were localized to CD11+ antigen-presenting cells and CD4+ T cells, respectively, from the colonic lamina propria. Colitis was associated with a 6-fold expansion of CD4+ IL-17,expressing T cells. Conclusion The IL-23/IL-17 axis is strongly activated in the colon of B27/Hu,2m-transgenic rats with spondylarthritis-like disease. HLA,B27 misfolding and UPR activation in macrophages can result in enhanced induction of the pro-Th17 cytokine IL-23. These results suggest a possible link between HLA,B27 misfolding and immune dysregulation in this animal model, with implications for human disease. [source]


    Spondylarthritis in HLA,B27/human ,2 -microglobulin,transgenic rats is not prevented by lack of CD8

    ARTHRITIS & RHEUMATISM, Issue 7 2009
    Joel D. Taurog
    Objective HLA,B27 predisposes to spondylarthritis by an unknown mechanism. A logical candidate mechanism is through recognition of B27 by CD8+ T cells. The purpose of this study was to examine the effects of a lack of CD8 on the spondylarthritis that develops in B27/human ,2 -microglobulin (Hu,2m),transgenic rats. Methods A missense mutation in the CD8a gene that causes a loss of CD8, expression was identified in offspring of a male Sprague-Dawley rat that had been treated with the mutagen N -ethyl- N -nitrosourea. The mutation was crossed into B27/Hu,2m-transgenic lines on the Lewis background. CD8a,/, and CD8a+/, progeny were compared on a mixed SD-LEW background as well as after at least 10 backcrosses to LEW rats. CD8 function was assessed by generating cytolytic T lymphocytes (CTLs) against allogeneic DA strain antigens. Results Homozygous mutant rats showed normal CD8a and CD8b messenger RNA levels but no detectable expression of either protein and an almost complete abrogation of the allogeneic CTL response. Two disease phenotypes previously observed in different B27/Hu,2m-transgenic lines also occurred in the respective CD8a,/, -transgenic rat lines. There was no significant difference in disease prevalence or severity between CD8a,/, rats and CD8a+/, rats. Conclusion All of the previously described disease manifestations in HLA,B27/Hu,2m-transgenic rats arise in the absence of any functional CD8+ T cells. It thus seems unlikely that classic T cell recognition of HLA,B27 is of primary importance in this animal model. The possibility of a secondary role of a CD8-dependent mechanism cannot be entirely excluded. [source]


    HLA,B27 up-regulation causes accumulation of misfolded heavy chains and correlates with the magnitude of the unfolded protein response in transgenic rats: Implications for the pathogenesis of spondylarthritis-like disease

    ARTHRITIS & RHEUMATISM, Issue 1 2007
    Matthew J. Turner
    Objective HLA,B27 is implicated in the pathogenesis of spondylarthritis (SpA), yet the molecular mechanisms are incompletely defined. HLA,B27 misfolding has been associated with endoplasmic reticulum stress and activation of the unfolded protein response (UPR) in macrophages from HLA,B27/human ,2 -microglobulin,transgenic (B27-transgenic) rats. This study was performed to assess the mechanisms that drive activation of the HLA,B27,induced UPR and to determine whether splenocytes respond in a similar manner. Methods Splenocytes were isolated and bone marrow macrophages were derived from B27-transgenic and wild-type rats. Cells were treated for up to 24 hours with cytokines that induce class I major histocompatibility complex expression. HLA,B27 expression and misfolding were assessed by real-time reverse transcription,polymerase chain reaction, flow cytometry, and immunoblotting. Activation of the UPR was measured by quantifying UPR target gene expression and X-box binding protein 1 messenger RNA (mRNA) splicing. Results HLA,B27 mRNA up-regulation was accompanied by a dramatic increase in the accumulation of misfolded heavy chains and preceded robust activation of the UPR in macrophages. When macrophages were treated with various cytokines, the magnitude of the UPR correlated strongly with the degree of HLA,B27 up-regulation. In contrast, B27-transgenic splenocytes exhibited only low-level differences in the expression of UPR target genes after exposure to interferon-, or concanavalin A, which resulted in minimal HLA,B27 up-regulation. Conclusion These results suggest that HLA,B27,associated activation of the UPR in macrophages is attributable to the accumulation of misfolded heavy chains, and that certain cell types may be more susceptible to the effects of HLA,B27 misfolding. Strategies that eliminate HLA,B27 up-regulation and/or the accumulation of misfolded heavy chains may be useful in evaluating the role of these events in the pathogenesis of SpA. [source]


    Angiotensin-(1-7) is involved in the endothelium-dependent modulation of phenylephrine-induced contraction in the aorta of mRen-2 transgenic rats

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 7 2002
    Virgķnia S Lemos
    The contribution of the local vascular production of angiotensin-(1-7) [Ang-(1-7)] to the control of ,-adrenergic-induced contractions in the aorta of Sprague-Dawley (SD) and TGR(mRen-2)27 [mRen-2] rats was studied. In mRen-2 rats, contractile responses to phenylephrine were diminished as compared to control SD rats in endothelium containing but not in endothelium-denuded vessels. L -NAME increased contractile responses to phenylephrine in mRen-2 rats and, after nitric oxide synthase blockade, responses to phenylephrine became comparable in both strains. Inhibition of angiotensin-converting enzyme (ACE) by captopril potentiated contractile responses in mRen-2 rats and diminished contractile responses in SD rats, both effects being dependent on the presence of a functional endothelium. The effect of captopril in mRen-2 rats was abolished in vessels pre-incubated with Ang-(1-7). Blockade of Ang-(1-7) and bradykinin (BK) receptors by A-779 and HOE 140 respectively, increased phenylephrine-induced contraction in mRen-2, but not in SD rats. This effect was seen only in endothelium-containing vessels. Angiotensin II AT1 and AT2 receptor blockade by CV 11974 and PD 123319 did not affect the contractile responses to phenylephrine in aortas of transgenic animals but diminished the response in SD rats. This effect was only seen in the presence of a functional endothelium. It is concluded that the decreased contractile responses to phenylephrine in aortas of mRen-2 rats was dependent on an intact endothelium, the local release and action of Ang-(1-7) and bradykinin. British Journal of Pharmacology (2002) 135, 1743,1748; doi:10.1038/sj.bjp.0704630 [source]


    Rapid induction of skin and mammary tumors in human c-Ha- ras proto-oncogene transgenic rats by treatment with 7,12-dimethylbenz[a]anthracene followed by 12- O -tetradecanoylphorbol 13-acetate

    CANCER SCIENCE, Issue 3 2004
    Cheol Beom Park
    We have established a transgenic rat line carrying 3 copies of the human c-Ha- ras proto-oncogene with its own promoter region (Jcl/SD-TgN(HrasGen)128Ncc) (Hras128 rat), expression being detectable in almost all organs. We have already demonstrated that the rat is highly sensitive to mammary, esophagus and bladder carcinogenesis. In the present study, male and female transgenic and wild-type littermates were topically treated with 2.5 mg of 7,12-dimethylbenz[a]anthracene (DMBA) dissolved in 1.0 ml of acetone on the back skin at 50 days after birth. Starting 1 week thereafter, they were again topically treated with 100 nmol of 12- O -tetradecanoylphorbol 13-acetate (TPA) dissolved in 0.5 ml of acetone 3 times weekly for the following 31 weeks. In males treated with DMBA and/or TPA, skin tumors, including both squamous cell papillomas (SCP) and carcinomas (SCC), were preferentially induced at the DMBA-TPA painting sites: DMBA-TPA, 15/15 (100%); DMBA, 6/8 (75%); TPA, 1/6 (16.7%). They were also, unexpectedly, induced on remote scrotal skin: DMBA-TPA, 13/15 (86.7%); DMBA, 5/8 (62.5%); TPA, 0/6 (0%). Lesions were thus more frequent in the DMBA-TPA group than with DMBA or TPA alone. In females, adenomas and adenocarcinomas of the mammary glands were preferentially induced: DMBA-TPA, 12/14 (85.7%); DMBA, 6/8 (75%); TPA, 3/6 (50%), with only a few small skin papillomas at painting sites. Incidences and numbers of the mammary and skin tumors were much greater in Hras128 rats than in their wild-type counterparts. PCR-RFLP analysis of the transgene indicated that the percentage of the cell populations harboring a mutation in codons 12 and/or 61 ranged from 2% to 60% in individual tumors; skin tumors showed more mutations in codon 61 in the DMBA-treated groups. In contrast, no mutations were detected in the endogenous rat c-Ha-ras gene. These results indicate that the Hras128 rat is highly susceptible to DMBA-TPA skin and mammary carcinogenesis, thus providing a unique painting model for skin as well as mammary gland carcinogenesis, that would be suitable for investigating the role of transgene mutations. [source]


    Angiotensin receptors in the eyes of arterial hypertensive rats

    ACTA OPHTHALMOLOGICA, Issue 4 2010
    Anu Vaajanen
    Abstract. Purpose:, The aim of the present study was to determine whether the eye tissues of arterial hypertensive rats evince expression of angiotensin receptors (AT1 and AT2) as well as the novel Mas receptor, whose endogenous ligand is vasorelaxing Angiotensin (1,7) [Ang (1,7)]. Methods:, Enucleated eyes from spontaneously hypertensive rats (SHR) and double transgenic rats harbouring human renin and angiotensinogen genes (dTGR) and their normotensive controls were used. Half of the rats were pretreated orally with an Angiotensin II (Ang II) type 1 receptor blocker (ARB). The eyes were snap-frozen in isopentane at ,40° and stored at ,70° for subsequent reverse transcriptase polymerase chain reaction (RT-PCR) analysis or in vitro autoradiography. Results:, The mRNA expression of AT1a and AT 2 as well as the novel Mas receptor was detected in all rat groups, being markedly higher in the retina than in the ciliary body. dTGR had significantly more receptors than SHR, but no direct relation to blood pressure level was seen. According to the autoradiography, treatment with ARB blocked a part of AT1 receptors but had no clear effect on AT2 receptors. Conclusion:, The novel Mas receptor was found by RT-PCR in eye tissue for the first time. Its specific ligand, Ang (1,7), may be involved in the regulation of intraocular pressure , as recently demonstrated by us , and in the pathogenesis of retinal diseases as a counter-regulatory component for the vascular and proliferative actions of Ang II. The results suggest that the density of AT1 receptors in the eye is independent of the blood pressure level of the animal. [source]